Home
Class 12
MATHS
int(dx)/(2x^2+3x+5)=...

`int(dx)/(2x^2+3x+5)=`

A

`(2)/(sqrt(31))tan^(-1)((2x+3)/(sqrt(31)))+c`

B

`(4)/(sqrt(31))tan^(-1)((2x+3)/(sqrt(31)))+c`

C

`(2)/(sqrt(31))tan^(-1)((4x+3)/(sqrt(31)))+c`

D

`(4)/(sqrt(31))tan^(-1)((4x+3)/(sqrt(31)))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{2x^2 + 3x + 5}\), we will follow these steps: ### Step 1: Factor out the coefficient of \(x^2\) We start by factoring out the coefficient of \(x^2\) from the denominator: \[ \int \frac{dx}{2(x^2 + \frac{3}{2}x + \frac{5}{2})} \] This can be rewritten as: \[ \frac{1}{2} \int \frac{dx}{x^2 + \frac{3}{2}x + \frac{5}{2}} \] **Hint:** Always factor out the leading coefficient when dealing with quadratic expressions in the denominator. ### Step 2: Complete the square Next, we complete the square for the quadratic expression \(x^2 + \frac{3}{2}x + \frac{5}{2}\). To do this, we take half of the coefficient of \(x\) (which is \(\frac{3}{2}\)), square it, and add and subtract it inside the integral: \[ \text{Half of } \frac{3}{2} = \frac{3}{4}, \quad \left(\frac{3}{4}\right)^2 = \frac{9}{16} \] Thus, we can rewrite the quadratic as: \[ x^2 + \frac{3}{2}x + \frac{9}{16} - \frac{9}{16} + \frac{5}{2} = \left(x + \frac{3}{4}\right)^2 - \frac{9}{16} + \frac{40}{16} = \left(x + \frac{3}{4}\right)^2 + \frac{31}{16} \] Now, we can rewrite the integral: \[ \frac{1}{2} \int \frac{dx}{\left(x + \frac{3}{4}\right)^2 + \frac{31}{16}} \] **Hint:** Completing the square helps to transform the quadratic into a standard form that is easier to integrate. ### Step 3: Use the standard integral formula We recognize that the integral now resembles the standard form: \[ \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C \] In our case, \(a^2 = \frac{31}{16}\) which gives \(a = \frac{\sqrt{31}}{4}\). Therefore, we can rewrite our integral as: \[ \frac{1}{2} \cdot \frac{4}{\sqrt{31}} \tan^{-1}\left(\frac{x + \frac{3}{4}}{\frac{\sqrt{31}}{4}}\right) + C \] **Hint:** Recognizing standard integral forms allows for quicker integration. ### Step 4: Simplify the expression Now, simplifying the expression: \[ \frac{2}{\sqrt{31}} \tan^{-1}\left(\frac{4(x + \frac{3}{4})}{\sqrt{31}}\right) + C \] This simplifies to: \[ \frac{2}{\sqrt{31}} \tan^{-1}\left(\frac{4x + 3}{\sqrt{31}}\right) + C \] **Hint:** Always simplify your final expression to its most concise form. ### Final Answer Thus, the final result of the integral is: \[ \int \frac{dx}{2x^2 + 3x + 5} = \frac{2}{\sqrt{31}} \tan^{-1}\left(\frac{4x + 3}{\sqrt{31}}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(2x^2+3x+5))=

(i) int (x dx)/(x^2+3x+2) (ii) int x/(x^2+5x+6) dx

int(1)/(x^(2)+3x+5)dx=

Find the following integrals : (i) int(dx)/(x^(2)-6x+13)int(dx)/(3x^(2)+13x-10)int(dx)/(sqrt(5x^(2)-2x))

Evaluate the following indefinite integrals. (a) int(dx)/(sqrt(x)) (b) int(dx)/((2x+3)) (c) intsin(2pix+30^(@))dx (d) intsinxcosxdx (e) int(3x^(3)-5x^(2)+2)dx (f) int(2e^(-x//3)dx

" Evaluate ":int(x+3)/(x^(2)-2x-5)dx

int (2x)/(x^2+3x+2) dx (ii) int x/((x+1)(x+2)) dx

int(dx)/(sqrt(x^(2)-3x+5))

int(dx)/(sqrt(x^(2)-3x+5)