Home
Class 12
MATHS
int(dx)/(7+6x-x^2)=...

`int(dx)/(7+6x-x^2)=`

A

`(1)/(4)log|(7-x)/(1+x)|+c`

B

`(1)/(4)log|(1+x)/(7-x)|+c`

C

`(1)/(8)log|(7-x)/(1+x)|+c`

D

`(1)/(8)log|(1+x)/(7-x)|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{7 + 6x - x^2}\), we will follow these steps: ### Step 1: Rewrite the Denominator First, we rewrite the quadratic expression in the denominator. We can rearrange it as: \[ -x^2 + 6x + 7 = -(x^2 - 6x - 7) \] Now, we will factor the quadratic expression \(x^2 - 6x - 7\). ### Step 2: Completing the Square To complete the square for the expression \(x^2 - 6x - 7\), we take the coefficient of \(x\) (which is -6), halve it to get -3, and then square it to get 9. We can rewrite the expression as: \[ x^2 - 6x + 9 - 9 - 7 = (x - 3)^2 - 16 \] Thus, we have: \[ 7 + 6x - x^2 = -((x - 3)^2 - 16) = 16 - (x - 3)^2 \] ### Step 3: Substitute into the Integral Now we substitute this back into the integral: \[ \int \frac{dx}{7 + 6x - x^2} = \int \frac{dx}{16 - (x - 3)^2} \] ### Step 4: Use the Standard Integral Formula The integral \(\int \frac{dx}{a^2 - u^2}\) can be solved using the formula: \[ \int \frac{dx}{a^2 - u^2} = \frac{1}{2a} \log\left|\frac{a + u}{a - u}\right| + C \] In our case, \(a = 4\) and \(u = x - 3\). Therefore: \[ \int \frac{dx}{16 - (x - 3)^2} = \frac{1}{2 \cdot 4} \log\left|\frac{4 + (x - 3)}{4 - (x - 3)}\right| + C \] This simplifies to: \[ \frac{1}{8} \log\left|\frac{x + 1}{7 - x}\right| + C \] ### Final Answer Thus, the final answer to the integral is: \[ \int \frac{dx}{7 + 6x - x^2} = \frac{1}{8} \log\left|\frac{x + 1}{7 - x}\right| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(dx)/((1-6x-9x^(2)))

(i) int (dx)/sqrt(16-6x-x^2) (ii) int (dx)/sqrt(7-6x-x^2)

int(dx)/(x(x^(7)+2))

int(dx)/(x+x^(7))=p(x), then int(x^(6))/(x+x^(7))dx is

int(1)/(6+5x-6x^(2))dx

Evaluate the following integrals : (a) int (dx)/( x^(2) - 6x + 13),

int(dx)/(sqrt(6-x-x^(2)))

Evaluate: int (dx)/(x^2-6x+13)

int(x+3)/(sqrt(7-6x-x^(2)))dx