Home
Class 12
MATHS
int(dx)/(sqrt(3+4x-4x^2))=...

`int(dx)/(sqrt(3+4x-4x^2))=`

A

`(1)/(2)cos^(-1)((2x-1)/(2))+c`

B

`2cos^(-1)((2x-1)/(2))+c`

C

`(1)/(2)sin^(-1)((2x-1)/(2))+c`

D

`2sin^(-1)((2x-1)/(2))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{\sqrt{3 + 4x - 4x^2}}, \] we will follow these steps: ### Step 1: Rewrite the expression under the square root First, we rewrite the expression inside the square root: \[ 3 + 4x - 4x^2 = -4(x^2 - x - \frac{3}{4}). \] ### Step 2: Factor out the negative sign Next, we factor out the negative sign from the quadratic expression: \[ I = \int \frac{dx}{\sqrt{-4(x^2 - x - \frac{3}{4})}} = \int \frac{dx}{2\sqrt{-(x^2 - x - \frac{3}{4})}}. \] ### Step 3: Complete the square Now, we complete the square for the quadratic expression \(x^2 - x - \frac{3}{4}\): \[ x^2 - x - \frac{3}{4} = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4} - \frac{3}{4} = \left(x - \frac{1}{2}\right)^2 - 1. \] ### Step 4: Substitute back into the integral Substituting this back into the integral gives us: \[ I = \int \frac{dx}{2\sqrt{-4\left(\left(x - \frac{1}{2}\right)^2 - 1\right)}} = \int \frac{dx}{2\sqrt{-4\left(\left(x - \frac{1}{2}\right)^2 - 1\right)}}. \] ### Step 5: Simplify the integral This can be simplified to: \[ I = \int \frac{dx}{2\sqrt{4 - 4\left(x - \frac{1}{2}\right)^2}} = \frac{1}{2} \int \frac{dx}{\sqrt{1 - \left(x - \frac{1}{2}\right)^2}}. \] ### Step 6: Use the standard integral formula The integral \(\int \frac{dx}{\sqrt{1 - u^2}} = \sin^{-1}(u) + C\) can be applied here, where \(u = x - \frac{1}{2}\): \[ I = \frac{1}{2} \sin^{-1}\left(x - \frac{1}{2}\right) + C. \] ### Step 7: Final answer Thus, the final answer is: \[ I = \frac{1}{2} \sin^{-1}(2x - 1) + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(15+4x-4x^2))=

int(dx)/(sqrt(3x^2-4x+2))=

int(dx)/(sqrt(3+4x-2x^(2)))

int(dx)/(sqrt(9-4x^(2)))

int(dx)/(sqrt(16-4x^(2)))=?

int(dx)/(sqrt(8-4x-2x^(2)))

int(dx)/(sqrt(4x^(2)-3x))

Evaluate : int(dx)/(sqrt(5x+4x-x^(2)))

Evaluate :int(dx)/(sqrt(5-4x-2x^(2)))

int(dx)/(sqrt(4x^(2)+3))