Home
Class 12
MATHS
int(sec^2x)/(sqrt(2tan^2x+3tanx+3))dx=...

`int(sec^2x)/(sqrt(2tan^2x+3tanx+3))dx=`

A

`log|tanx+(3)/(2)+sqrt(tan^2x+(3tanx)/(2)+(3)/(2))|+c`

B

`log|tanx+(1)/(2)+sqrt(tan^2x+(3tanx)/(2)+(3)/(2))|+c`

C

`(1)/(sqrt(2))log|tanx+(3)/(4)+sqrt(tan^2x+(3tanx)/(2)+(3)/(2))|+c`

D

`(1)/(sqrt(2))log|tanx+(1)/(4)+sqrt(tan^2x+(3tanx)/(2)+(3)/(2))|+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(sec^2x)/(2 tan^2x+7 tanx +13)dx=

Evaluate: int (sec^2x)/sqrt(tan^2x+2tanx+5) dx

int(sec^(2)x)/(sqrt(tanx))dx

int(sec^2x)/(2+tanx)dx

Integrate : int(sec^(2)x)/(sqrt(1+tan x))dx

int(sec^(2)2x)/(sqrt(cot x-tan x))dx=

int(sec^(2)x)/(sqrt(1-tan^(2)x))dx=?

int(sec^(2)x)/(sqrt(tan^(2)x+2tan x+10))dx xx

int(sec^(2)x)/((2+tan x)(3+tan x))dx

int(sec^(2)x)/(sqrt(1+tan x))dx