Home
Class 12
MATHS
int(5x-1)/(3x^2+x+2)dx=...

`int(5x-1)/(3x^2+x+2)dx=`

A

`(5)/(6)log|3x^2+x+2|-(11)/(3sqrt(23))tan^(-1)((6x+1)/(sqrt(23)))+c`

B

`(5)/(6)log|3x^2+x+2|+(11)/(3sqrt(23))tan^(-1)((6x+1)/(sqrt(23)))+c`

C

`(5)/(3)log|3x^2+x+2|-(11)/(3sqrt(23))tan^(-1)((6x+1)/(sqrt(23)))+c`

D

`(5)/(3)log|3x^2+x+2|+(11)/(3sqrt(23))tan^(-1)((6x+1)/(sqrt(23)))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{5x - 1}{3x^2 + x + 2} \, dx\), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand: \[ \frac{5x - 1}{3x^2 + x + 2} = \frac{6x + 1 - (x + 2)}{3x^2 + x + 2} \] This allows us to separate the fraction: \[ = \frac{6x + 1}{3x^2 + x + 2} - \frac{x + 2}{3x^2 + x + 2} \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ \int \frac{5x - 1}{3x^2 + x + 2} \, dx = \int \frac{6x + 1}{3x^2 + x + 2} \, dx - \int \frac{x + 2}{3x^2 + x + 2} \, dx \] ### Step 3: Solve the first integral For the first integral, we can use substitution. Let: \[ t = 3x^2 + x + 2 \implies dt = (6x + 1) \, dx \] Thus, the first integral becomes: \[ \int \frac{6x + 1}{3x^2 + x + 2} \, dx = \int \frac{dt}{t} = \ln |t| + C_1 = \ln |3x^2 + x + 2| + C_1 \] ### Step 4: Solve the second integral For the second integral, we can simplify it: \[ \int \frac{x + 2}{3x^2 + x + 2} \, dx \] This can be approached by partial fraction decomposition or direct integration. We can perform polynomial long division if necessary, but in this case, we can directly integrate: \[ \int \frac{x + 2}{3x^2 + x + 2} \, dx \] This integral can be solved by recognizing that the derivative of the denominator is \(6x + 1\), which is related to the numerator. ### Step 5: Combine results Combining the results from both integrals, we have: \[ \int \frac{5x - 1}{3x^2 + x + 2} \, dx = \frac{5}{6} \ln |3x^2 + x + 2| - \frac{1}{6} \int \frac{dt}{t} + C \] The second integral simplifies to: \[ -\frac{1}{6} \ln |3x^2 + x + 2| + C_2 \] Thus, we can combine these results: \[ \int \frac{5x - 1}{3x^2 + x + 2} \, dx = \frac{5}{6} \ln |3x^2 + x + 2| - \frac{1}{6} \ln |3x^2 + x + 2| + C \] This simplifies to: \[ \frac{4}{6} \ln |3x^2 + x + 2| + C \] ### Final Answer The final answer is: \[ \int \frac{5x - 1}{3x^2 + x + 2} \, dx = \frac{2}{3} \ln |3x^2 + x + 2| + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(5x-3)/(x^2-2x-3)dx

int(1)/(2x^(2)+5x+3)dx

Evaluate: int(5x-2)/(1+2x+3x^(2))dx

If int(5x+2)/(x^(2)-3x+2)dx=log[(x-2)^(m).(x-1)^(n)]+c then (m,n)-=

int(1)/(x^(2)+3x+5)dx=

int(5x-2)/sqrt(3x+7)dx

int(3x+1)/(2x^(2)+x-1)dx

int(4+5x)/(2-3x)dx

int(5x+3)/((x+1)^(2))dx

int_(1)^(3)(x^(2)+5x)dx