Home
Class 12
MATHS
int(x)/(sqrt(8+x-x^2))dx=...

`int(x)/(sqrt(8+x-x^2))dx=`

A

`(1)/(2)sin^(-1)((2x-1)/(sqrt(33)))+sqrt(8+x-x^2)+c`

B

`(1)/(2)sin^(-1)((2x-1)/(sqrt(33)))-sqrt(8+x-x^2)+c`

C

`(1)/(4)sin^(-1)((2x-1)/(sqrt(33)))+sqrt(8+x-x^2)+c`

D

`(1)/(4)sin^(-1)((2x-1)/(sqrt(33)))-sqrt(8+x-x^2)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

If int(x)/(sqrt(8-2x-x^(2)))dx=a sin^(-1)((x+1)/(3))+b sqrt(8-2x-x^(2))+c , then

int(dx)/(sqrt(2x-x^(2)))

int(dx)/(sqrt(8+2x-x^(2)))

int(1)/(sqrt(8+2x-x^(2)))dx=

int(1)/(sqrt(8+2x-x^(2)))dx is equal to

int(dx)/(sqrt(6-x-x^(2)))

int1/sqrt(8+2x-x^(2))dx=

int(dx)/(sqrt(8-4x-2x^(2)))

int(dx)/(sqrt(3x^2+8))=

int(1)/(sqrt(4+8x-5x^(2)))dx