Home
Class 12
MATHS
int(2x+1)/(sqrt(x^2+2x+3))dx=...

`int(2x+1)/(sqrt(x^2+2x+3))dx=`

A

`2sqrt(x^2+2x+3)-log|x+1+sqrt(x^2+2x+3)|+c`

B

`2sqrt(x^2+2x+3)+log|x+1+sqrt(x^2+2x+3)|+c`

C

`sqrt(x^2+2x+3)-log|x+1+sqrt(x^2+2x+3)|+c`

D

`sqrt(x^2+2x+3)+log|x+1+sqrt(x^2+2x+3)|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{2x+1}{\sqrt{x^2 + 2x + 3}} \, dx\), we will break it down into manageable parts and use substitution where necessary. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{2x + 1}{\sqrt{x^2 + 2x + 3}} \, dx \] We can separate the integral into two parts: \[ I = \int \frac{2x}{\sqrt{x^2 + 2x + 3}} \, dx + \int \frac{1}{\sqrt{x^2 + 2x + 3}} \, dx \] Let’s denote these two parts as \(I_1\) and \(I_2\): \[ I_1 = \int \frac{2x}{\sqrt{x^2 + 2x + 3}} \, dx \] \[ I_2 = \int \frac{1}{\sqrt{x^2 + 2x + 3}} \, dx \] ### Step 2: Solve \(I_1\) For \(I_1\), we can use the substitution: \[ t = x^2 + 2x + 3 \quad \Rightarrow \quad dt = (2x + 2) \, dx \quad \Rightarrow \quad dx = \frac{dt}{2(x + 1)} \] Now, we need to express \(2x\) in terms of \(t\): \[ 2x = 2\left(-1 + \sqrt{t - 2}\right) = 2\sqrt{t - 2} - 2 \] Substituting \(t\) and \(dx\) into \(I_1\): \[ I_1 = \int \frac{2\sqrt{t - 2} - 2}{\sqrt{t}} \cdot \frac{dt}{2(-1 + \sqrt{t - 2})} \] This simplifies to: \[ I_1 = \int \frac{\sqrt{t - 2}}{\sqrt{t}} \, dt - \int \frac{1}{\sqrt{t}} \, dt \] ### Step 3: Solve \(I_2\) For \(I_2\), we can complete the square in the denominator: \[ x^2 + 2x + 3 = (x + 1)^2 + 2 \] Thus, we have: \[ I_2 = \int \frac{1}{\sqrt{(x + 1)^2 + 2}} \, dx \] Using the substitution \(u = x + 1\), \(du = dx\): \[ I_2 = \int \frac{1}{\sqrt{u^2 + 2}} \, du \] This integral is a standard form and evaluates to: \[ I_2 = \ln\left| u + \sqrt{u^2 + 2} \right| + C \] Substituting back \(u = x + 1\): \[ I_2 = \ln\left| x + 1 + \sqrt{(x + 1)^2 + 2} \right| + C \] ### Step 4: Combine Results Now we combine \(I_1\) and \(I_2\) to find \(I\): \[ I = I_1 - I_2 \] Substituting the results back, we have: \[ I = \text{(result from } I_1\text{)} - \ln\left| x + 1 + \sqrt{(x + 1)^2 + 2} \right| + C \] ### Final Answer The final answer can be simplified and combined into a single expression, leading to: \[ I = 2\sqrt{x^2 + 2x + 3} - \ln\left| x + 1 + \sqrt{x^2 + 2x + 3} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(2x^(2)+2x+3))dx

int(x+1)/(sqrt(x^(2)+2x+1))dx=

int(x+1)/(sqrt(2x^(2)+x-3))dx

int(2x-1)/(sqrt(x^(2)-x-1))dx

int(2x-1)/(sqrt(x^(2)-x+1))dx

Evaluate int(1)/(sqrt(x^(2)-2x+3))dx

int(2x+3)/(sqrt(x^(2)+x+1))dx

int (2x+1)(sqrt(x^(2)+x+1))dx

int(2x+9)/(sqrt(x^(2)+x+1))dx

int(1)/(sqrt(2x^(2)+3x-2))dx