Home
Class 12
MATHS
int(3x+2)/(sqrt(2x^2+2x+1))dx=...

`int(3x+2)/(sqrt(2x^2+2x+1))dx=`

A

`(3)/(2)sqrt(2x^2+2x+1)-(1)/(sqrt(2))log|x+(1)/(2)+sqrt(x^2+x+(1)/(2))|+c`

B

`(3)/(2)sqrt(2x^2+2x+1)+(1)/(sqrt(2))log|x+(1)/(2)+sqrt(x^2+x+(1)/(2))|+c`

C

`(3)/(2)sqrt(2x^2+2x+1)-(1)/(2sqrt(2))log|x+(1)/(2)+sqrt(x^2+x+(1)/(2))|+c`

D

`(3)/(2)sqrt(2x^2+2x+1)+(1)/(2sqrt(2))log|x+(1)/(2)+sqrt(x^2+x+(1)/(2))|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{3x + 2}{\sqrt{2x^2 + 2x + 1}} \, dx \), we will follow these steps: ### Step 1: Simplify the Denominator First, we simplify the expression under the square root: \[ 2x^2 + 2x + 1 = 2(x^2 + x + \frac{1}{2}) \] This can be rewritten as: \[ 2\left(x^2 + x + \frac{1}{4} + \frac{1}{4}\right) = 2\left((x + \frac{1}{2})^2 + \frac{1}{4}\right) \] Thus, we have: \[ \sqrt{2x^2 + 2x + 1} = \sqrt{2}\sqrt{(x + \frac{1}{2})^2 + \frac{1}{4}} \] ### Step 2: Substitution Let: \[ y = 2x^2 + 2x + 1 \] Then, differentiating \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 4x + 2 \quad \Rightarrow \quad dy = (4x + 2) \, dx \] From this, we can express \( dx \) in terms of \( dy \): \[ dx = \frac{dy}{4x + 2} \] ### Step 3: Rewrite the Integral Now, substituting \( y \) into the integral: \[ \int \frac{3x + 2}{\sqrt{y}} \cdot \frac{dy}{4x + 2} \] We can express \( 3x + 2 \) in terms of \( y \): \[ 3x + 2 = \frac{3}{4}(4x + 2) - \frac{1}{4} \] Thus, the integral becomes: \[ \int \left(\frac{3}{4} - \frac{1}{4(4x + 2)}\right) \frac{dy}{\sqrt{y}} \] ### Step 4: Separate the Integral This gives us two separate integrals: \[ \frac{3}{4} \int \frac{dy}{\sqrt{y}} - \frac{1}{4} \int \frac{dy}{(4x + 2)\sqrt{y}} \] ### Step 5: Solve the Integrals The first integral: \[ \frac{3}{4} \int \frac{dy}{\sqrt{y}} = \frac{3}{4} \cdot 2\sqrt{y} = \frac{3}{2} \sqrt{y} \] The second integral can be solved using the substitution \( u = 4x + 2 \), which will require additional steps. ### Step 6: Back Substitute After solving the integrals, we substitute back \( y = 2x^2 + 2x + 1 \) to express the result in terms of \( x \). ### Final Result Combining all parts, we will have: \[ \int \frac{3x + 2}{\sqrt{2x^2 + 2x + 1}} \, dx = \frac{3}{2} \sqrt{2x^2 + 2x + 1} - \text{(other terms)} + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(x+1)/(sqrt(x^(2)+2x+1))dx=

Evaluate int(3x+4)/(sqrt(2x^(2)+2x+1))dx

int(x+1)/(sqrt(2x^(2)+x-3))dx

int(2x+3)/(sqrt(x^(2)+x+1))dx

int(2x-1)/(sqrt(x^(2)-x-1))dx

int(2x-1)/(sqrt(x^(2)-x+1))dx

int(1)/(sqrt(2x^(2)+2x+3))dx

int(3x-2)sqrt(2x^(2)-x+1).dx

int(dx)/(sqrt(2x^(2)+3x-2))

Evaluate: (i) int(4x+2)sqrt(x^(2)+x+1)dx (ii) int(4x+3)/(sqrt(2x^(2)+3x+1))dx