Home
Class 12
MATHS
int(dx)/(xsqrt(2x^2-2x+1))=...

`int(dx)/(xsqrt(2x^2-2x+1))=`

A

`-logx+log|1-x+sqrt(1-2x+2x^2)|+c`

B

`logx+log|1-x+sqrt(1-2x+2x^2)|+c`

C

`logx-log|1-x+sqrt(1-2x+2x^2)|+c`

D

`-logx-log|1-x+sqrt(1-2x+2x^2)|+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(xsqrt(x^(6)-1))=?

int(dx)/(xsqrt(x^(2)-4))

Prove that: int (dx)/(xsqrt(x^2-a^2))=1/a sec^-1 (x/a)+c

If int(dx)/(xsqrt(5x^(2)-3))=Ktan^(-1)f(x)+C then

int_(1)^(2)dx/(xsqrt(x^2-1))

Find the integral: int_0^sqrt(2) dx/(xsqrt(x^2 - 1))

int(dx)/(xsqrt(1-x^(3)))dx=

The value of int(dx)/(xsqrt(x^(4)-1)) is

int(1)/(xsqrt(x-1))dx=