Home
Class 12
MATHS
int(dx)/(3cos2x+5)=...

`int(dx)/(3cos2x+5)=`

A

`(1)/(2)tan^(-1)((tanx)/(2))+c`

B

`(1)/(2)tan^(-1)((tanx)/(4))+c`

C

`(1)/(4)tan^(-1)((tanx)/(2))+c`

D

`(1)/(4)tan^(-1)((tanx)/(4))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{3 \cos 2x + 5} \), we will follow these steps: ### Step 1: Use the identity for \( \cos 2x \) We know that: \[ \cos 2x = 2 \cos^2 x - 1 \] Substituting this into the integral gives: \[ I = \int \frac{dx}{3(2 \cos^2 x - 1) + 5} \] ### Step 2: Simplify the expression Now, simplify the expression in the denominator: \[ 3(2 \cos^2 x - 1) + 5 = 6 \cos^2 x - 3 + 5 = 6 \cos^2 x + 2 \] Thus, we have: \[ I = \int \frac{dx}{6 \cos^2 x + 2} \] ### Step 3: Factor out the common term Factor out the 2 from the denominator: \[ I = \int \frac{dx}{2(3 \cos^2 x + 1)} = \frac{1}{2} \int \frac{dx}{3 \cos^2 x + 1} \] ### Step 4: Multiply and divide by \( \sec^2 x \) To facilitate integration, multiply and divide by \( \sec^2 x \): \[ I = \frac{1}{2} \int \frac{\sec^2 x \, dx}{3 \cos^2 x \sec^2 x + \sec^2 x} = \frac{1}{2} \int \frac{\sec^2 x \, dx}{3 + \tan^2 x} \] ### Step 5: Use substitution Let \( t = \tan x \). Then, \( dt = \sec^2 x \, dx \). The integral becomes: \[ I = \frac{1}{2} \int \frac{dt}{3 + t^2} \] ### Step 6: Recognize the integral form The integral \( \int \frac{dt}{a^2 + t^2} \) has a standard result: \[ \int \frac{dt}{a^2 + t^2} = \frac{1}{a} \tan^{-1} \left( \frac{t}{a} \right) + C \] In our case, \( a^2 = 3 \) so \( a = \sqrt{3} \): \[ I = \frac{1}{2} \cdot \frac{1}{\sqrt{3}} \tan^{-1} \left( \frac{t}{\sqrt{3}} \right) + C \] ### Step 7: Substitute back for \( t \) Substituting back \( t = \tan x \): \[ I = \frac{1}{2\sqrt{3}} \tan^{-1} \left( \frac{\tan x}{\sqrt{3}} \right) + C \] ### Final Answer Thus, the final result for the integral is: \[ I = \frac{1}{2\sqrt{3}} \tan^{-1} \left( \frac{\tan x}{\sqrt{3}} \right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(2-3cos2x)

int(dx)/(3-2cos2x)=

int(dx)/(3+4cos2x)=

int(dx)/(5+7cos2x)=

int(dx)/(4+5cos^2x)=

int(dx)/(5+5cos x)

int(dx)/(3+2cos^(2)x)

evaluate int(dx)/(3+5cos x)

" (3) "int(dx)/(cos^(2)x)