Home
Class 12
MATHS
int(dx)/(a^2+b^2cos^2x)=...

`int(dx)/(a^2+b^2cos^2x)=`

A

`(1)/(bsqrt(a^2+b^2))tan^(-1)((btanx)/(sqrt(a^2+b^2)))+c`

B

`(-1)/(bsqrt(a^2+b^2))tan^(-1)((btanx)/(sqrt(a^2+b^2)))+c`

C

`(1)/(asqrt(a^2+b^2))tan^(-1)((atanx)/(sqrt(a^2+b^2)))+c`

D

`(-1)/(asqrt(a^2+b^2))tan^(-1)((atanx)/(sqrt(a^2+b^2)))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{a^2 + b^2 \cos^2 x} \), we can follow these steps: ### Step-by-Step Solution: 1. **Rewrite the Integral**: \[ I = \int \frac{dx}{a^2 + b^2 \cos^2 x} \] 2. **Multiply by Secant Squared**: We multiply the numerator and denominator by \( \sec^2 x \): \[ I = \int \frac{\sec^2 x \, dx}{a^2 \sec^2 x + b^2} \] 3. **Use the Identity**: Recall that \( \sec^2 x = 1 + \tan^2 x \): \[ I = \int \frac{\sec^2 x \, dx}{a^2 + b^2 + a^2 \tan^2 x} \] 4. **Substitution**: Let \( t = \tan x \). Then, \( dt = \sec^2 x \, dx \): \[ I = \int \frac{dt}{a^2 + b^2 + a^2 t^2} \] 5. **Rearranging the Denominator**: We can rewrite the integral: \[ I = \int \frac{dt}{a^2 + b^2 + a^2 t^2} = \int \frac{dt}{\sqrt{a^2 + b^2}^2 + a^2 t^2} \] 6. **Standard Form**: This integral is now in the form of: \[ \int \frac{dt}{A^2 + B^2 t^2} \] where \( A = \sqrt{a^2 + b^2} \) and \( B = a \). 7. **Using the Formula**: The integral can be solved using the formula: \[ \int \frac{dx}{A^2 + B^2 x^2} = \frac{1}{AB} \tan^{-1} \left( \frac{B x}{A} \right) + C \] Applying this: \[ I = \frac{1}{\sqrt{a^2 + b^2} \cdot a} \tan^{-1} \left( \frac{a t}{\sqrt{a^2 + b^2}} \right) + C \] 8. **Back Substitute**: Since \( t = \tan x \): \[ I = \frac{1}{\sqrt{a^2 + b^2} \cdot a} \tan^{-1} \left( \frac{a \tan x}{\sqrt{a^2 + b^2}} \right) + C \] ### Final Result: Thus, the integral evaluates to: \[ I = \frac{1}{a \sqrt{a^2 + b^2}} \tan^{-1} \left( \frac{a \tan x}{\sqrt{a^2 + b^2}} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(3+2cos^(2)x)

int(dx)/(b^(2)cos^(2)x+a^(2)sin^(2)x)

int(dx)/(3-2cos2x)=

int(dx)/(2-3cos2x)

What is int (dx)/(a^(2) sin^(2)x + b^(2) cos^(2)x) equal to ?

Write a value of int(sin2x)/(a^2sin^2x+b^2cos^2x)\ dx

Evaluate int(sin2x)/(a^2cos^2x+b^2sin^2x)dx