Home
Class 12
MATHS
int(dx)/(4+5cos^2x)=...

`int(dx)/(4+5cos^2x)=`

A

`(1)/(6)tan^(-1)((2tanx)/(3))+c`

B

`(1)/(3)tan^(-1)((2tanx)/(3))+c`

C

`(2)/(3)tan^(-1)((2tanx)/(3))+c`

D

`(1)/(12)tan^(-1)((2tanx)/(3))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{4 + 5 \cos^2 x} \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{dx}{4 + 5 \cos^2 x} \] ### Step 2: Use the identity for \(\cos^2 x\) We can express \(\cos^2 x\) in terms of \(\tan^2 x\): \[ \cos^2 x = \frac{1}{1 + \tan^2 x} \] Thus, we can rewrite the integral: \[ I = \int \frac{dx}{4 + 5 \cdot \frac{1}{1 + \tan^2 x}} = \int \frac{dx}{4 + \frac{5}{1 + \tan^2 x}} \] ### Step 3: Simplify the denominator Multiplying the numerator and denominator by \(1 + \tan^2 x\): \[ I = \int \frac{(1 + \tan^2 x) \, dx}{(4(1 + \tan^2 x) + 5)} \] This simplifies to: \[ I = \int \frac{(1 + \tan^2 x) \, dx}{4 + 5 + 4 \tan^2 x} = \int \frac{(1 + \tan^2 x) \, dx}{9 + 4 \tan^2 x} \] ### Step 4: Substitute \( \tan x = y \) Let \( \tan x = y \), then \( dx = \frac{dy}{1 + y^2} \): \[ I = \int \frac{(1 + y^2) \cdot \frac{dy}{1 + y^2}}{9 + 4y^2} = \int \frac{dy}{9 + 4y^2} \] ### Step 5: Factor out constants We can factor out the constant in the denominator: \[ I = \frac{1}{4} \int \frac{dy}{\frac{9}{4} + y^2} \] ### Step 6: Use the standard integral formula The standard integral formula is: \[ \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] In our case, \( a^2 = \frac{9}{4} \) so \( a = \frac{3}{2} \): \[ I = \frac{1}{4} \cdot \frac{1}{\frac{3}{2}} \tan^{-1} \left( \frac{y}{\frac{3}{2}} \right) + C \] ### Step 7: Substitute back \( y = \tan x \) Substituting back \( y = \tan x \): \[ I = \frac{1}{6} \tan^{-1} \left( \frac{2}{3} \tan x \right) + C \] ### Final Result Thus, the final result of the integral is: \[ I = \frac{1}{6} \tan^{-1} \left( \frac{2}{3} \tan x \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(5+7cos2x)=

int(dx)/(3+4cos2x)=

int(dx)/(4+5cos x)

int(dx)/(3cos2x+5)=

Evaluate int(dx)/(4+5cos x)

int(dx)/(5+4cos x)

int(dx)/(5+4cos x)

int(dx)/(5+5cos x)

evaluate int(dx)/(3+5cos x)