Home
Class 12
MATHS
If intsin^(-1)xdx=x sin^(-1)x+u+c, then ...

If `intsin^(-1)xdx=x sin^(-1)x+u+c,` then `u=`

A

`xsin^(-1)x-sqrt(1-x^2)+c`

B

`xsin^(-1)x+2sqrt(1-x^2)+c`

C

`xsin^(-1)x-2sqrt(1-x^2)+c`

D

`xsin^(-1)x+sqrt(1-x^2)+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int x sin^(-1)xdx

int x sin^(-1)xdx

int_(0)^(1)x sin^(-1)xdx

If intsin^(4)xdx=ax+bsin2x+c sin 4x+d, then (a, b, c)-=

if int x tan^(-1)xdx=u tan^(-1)x-(x)/(2)+c then u=

intsin^(2)xdx-(x)/(2)=

If inttan^(4)xdx=a tan^(3)x+b tan x+u+c, then

intsin x cos^(3)xdx

If inte^(sinx).sin2xdx=-2u.e^(sinx)+c, then u=

intsin^(4)x cos^(3)xdx=