Home
Class 12
MATHS
inttan^(-1)xdx=….+C...

`inttan^(-1)xdx=….+C`

A

`xtan^(-1)x+(1)/(2)log|1+x^2|+c`

B

`xtan^(-1)x-(1)/(2)log|1+x^2|+c`

C

`xtan^(-1)x+(1)/(4)log|1+x^2|+c`

D

`xtan^(-1)x-(1)/(4)log|1+x^2|+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int tan^(-1)xdx

intsin^(-1)xdx

intsin^(-1)xdx

intsec^(-1)xdx=

int cot^(-1)xdx

intcos^(-1)xdx=

Evaluate : intxtan^(-1)xdx

if int x tan^(-1)xdx=u tan^(-1)x-(x)/(2)+c then u=

inttan(sin^(-1)x)dx=

inttan^2(2x-3)dx