Home
Class 12
MATHS
int(x)/(1-cosx)dx=...

`int(x)/(1-cosx)dx=`

A

`xcot((x)/(2))+2log|sin((x)/(2))|+c`

B

`xcot((x)/(2))-2log|sin((x)/(2))|+c`

C

`-xcot((x)/(2))+2log|sin((x)/(2))|+c`

D

`-xcot((x)/(2))-2log|sin((x)/(2))|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x}{1 - \cos x} \, dx \), we will use integration by parts. Here are the steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{x}{1 - \cos x} \, dx \] We can use the identity \( 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \) to rewrite the integral: \[ I = \int \frac{x}{2 \sin^2\left(\frac{x}{2}\right)} \, dx = \frac{1}{2} \int \frac{x}{\sin^2\left(\frac{x}{2}\right)} \, dx \] ### Step 2: Apply Integration by Parts Let \( u = x \) and \( dv = \frac{dx}{\sin^2\left(\frac{x}{2}\right)} \). Then, we differentiate \( u \) and integrate \( dv \): \[ du = dx \] To find \( v \), we need to integrate \( \frac{1}{\sin^2\left(\frac{x}{2}\right)} \): \[ v = -\cot\left(\frac{x}{2}\right) \] ### Step 3: Use the Integration by Parts Formula Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we substitute our values: \[ I = \frac{1}{2} \left( x \cdot \left(-\cot\left(\frac{x}{2}\right)\right) - \int -\cot\left(\frac{x}{2}\right) \, dx \right) \] This simplifies to: \[ I = -\frac{x}{2} \cot\left(\frac{x}{2}\right) + \frac{1}{2} \int \cot\left(\frac{x}{2}\right) \, dx \] ### Step 4: Integrate \( \cot\left(\frac{x}{2}\right) \) The integral of \( \cot\left(\frac{x}{2}\right) \) is: \[ \int \cot\left(\frac{x}{2}\right) \, dx = -\ln\left|\sin\left(\frac{x}{2}\right)\right| + C \] ### Step 5: Substitute Back Substituting back into our equation for \( I \): \[ I = -\frac{x}{2} \cot\left(\frac{x}{2}\right) - \frac{1}{2} \ln\left|\sin\left(\frac{x}{2}\right)\right| + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{x}{1 - \cos x} \, dx = -\frac{x}{2} \cot\left(\frac{x}{2}\right) - \frac{1}{2} \ln\left|\sin\left(\frac{x}{2}\right)\right| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(1)/(1+cosx)dx=

int(dx)/(1+cosx)

int(cos^(2)x)/(1+sinx)dx+int(sin^(2)x)/(1-cosx)dx=

int(cosx)/(1-cosx)dx=

int(x+sinx)/(1-cosx)dx=

inte^(x)(1-sinx)/(1-cosx)dx=

inte^((x)/(2))((2-sinx)/(1-cosx))dx=

int(sin^(2)x)/(1+cosx)dx=

If inte^(x)((1-sinx)/(1-cosx))dx=f(x)+ Constant, then f(x) is equal to