Home
Class 12
MATHS
If inte^(x)sinxdx=(u)/(2)e^(x)+c, then u...

If `inte^(x)sinxdx=(u)/(2)e^(x)+c`, then `u=

A

`(e^x)/(2)(sinx+cosx+c)`

B

`(-e^x)/(2)(sinx+cosx+c)`

C

`(e^x)/(2)(sinx-cosx+c)`

D

`(-e^x)/(2)(sinx-cosx+c)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

2. int e^(x)sinxdx

if int e^(2x)sin x cos xdx=(u)/(8)e^(2x)+c then u

If inte^(sinx).sin2xdx=-2u.e^(sinx)+c, then u=

int x sinxdx

If intx^(2).e^(x^(3))dx=u.e^(x^(3))+c, then u=

int(sinxdx)/(1-cos x)=

int(sinxdx)/(3+4cos x)

if int e^(sqrt(x))dx=2ue^(sqrt(x))+c then u

I=int(sinxdx)/(cos^(3/4)x)=

Evaluate: inte^(2x)sinxdx