Home
Class 12
MATHS
inte^(x)(1+tanx+tan^(2)x)dx=...

`inte^(x)(1+tanx+tan^(2)x)dx=`

A

`e^xtanx+c`

B

`-e^xtanx+c`

C

`e^x(1+tanx)+c`

D

`-e^x|logsinx|+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(pi//4)e^(x)(1+tanx+tan^(2)x)dx

If inttanx/(1+tanx+tan^(2)x)dx =x-2/sqrt(A)tan^(-1)((2tanx+1)/sqrt(A))+c , then A=

int(1)/(1+tan ^(2)x)dx

int(2tanx)/(2+3tan^(2)x)dx=

inte^(x)tanx(1+tanx)dx=

int(2tan x)/(1+tan^(2)x)dx

int((1-tanx)/(1+tanx))^(2)dx=

int((1+tan)/(1-tanx))^(2)dx=

e^(-x) (dy)/(dx) = y(1+ tanx + tan^(2) x)

int(secx tanx)/(9-16 tan^2x)dx=