Home
Class 12
MATHS
inte^(x)((x-1)/(x^(2)))dx=...

`inte^(x)((x-1)/(x^(2)))dx=`

A

`(e^x)/(x)+c`

B

`(-e^x)/(x)+c`

C

`(e^x)/(x^2)+c`

D

`(-e^x)/(x^2)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

" 4.Evaluate: "int e^(x)((x-1)/(x^(2)))dx

int e^(x)""((x-1)/(x^(2)))dx is equal to

int[e^(x)(1/x-1/(x^(2)))]dx

int(x)/((x+1)(x^(2)-1))dx

int e^(x)(x-1)(x-2)dx

Evaluate: int(x)/((x-1)(x^(2)+4))dx

int(x)/((x-1)^(2)(x-2))dx

Evaluate: int(x+3)/((x-1)(x^(2)+1))dx

inte^(x){(1)/(x)-(1)/(x^(2))}dx=?

Evaluate : (i) inte^(x)((1)/(x)-(1)/(x^(2)))dx (ii) inte^(x)((1)/(x^(2))-(2)/(x^(3)))dx (iii) inte^(x){sin^(-1)x+(1)/(sqrt(1-x^(2)))}dx (iv) inte^(x)(tanx+logsecx)dx