Home
Class 12
MATHS
inte^(x)*(x)/((1+x)^(2))dx=?...

`inte^(x)*(x)/((1+x)^(2))dx=?`

A

`(-e^x)/(x+1)+c`

B

`(-e^x)/((x+1)^2)+c`

C

`(e^x)/(x+1)+c`

D

`(e^x)/((x+1)^2)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

" 4.Evaluate: "int e^(x)((x-1)/(x^(2)))dx

int[e^(x)(1/x-1/(x^(2)))]dx

int(x^(2)-x-2)/(1-x^(2))dx

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

int(x e^(x))/((1+x)^(2)) dx is equal to

inte^(x){(1)/(x)-(1)/(x^(2))}dx=?

int e^(x)""((x-1)/(x^(2)))dx is equal to

If inte^(x)((1-x)/(1+x^(2)))^(2)dx=e^(x)f(x)+c, then f(x)=

int((1+x)^(2))/(x(1+x^(2)))dx=