Home
Class 12
MATHS
int[(1)/(logx)-(1)/((logx)^(2))]dx=...

`int[(1)/(logx)-(1)/((logx)^(2))]dx=`

A

`(1)/(logx)+c`

B

`(x)/(logx)+c`

C

`(x)/(logx)^2+c`

D

`(1)/(xlogx)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx

Evaluate the following integrals: int{(1)/(logx)-(1)/((log)^(2))}dx

int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx

int(logx)^(2)dx=?

int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C , then

Evaluate int e^x(1/logx-1/(x(logx)^2)) dx

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

int1/(x(1-logx)^(2))dx=