Home
Class 12
MATHS
int3^x(f(x)log3+f'(x))dx=...

`int3^x(f(x)log3+f'(x))dx=`

A

`3^xf'(x)log3+c`

B

`3^xf(x)log3+c`

C

`3^xf'(x)+c`

D

`3^xf(x)+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

inte^(x).[f(x)-f''(x)]dx=

int(f'(x))/(f(x)log{f(x)})dx=

If int (f(x))/(log (sin x))dx =log [log sin x]+c , then f(x) =

If : int(f(x))/(log(cosx))dx=-log[log(cosx)]+c, then : f(x)=

If int(f(x))/(log(sinx))dx=log[log sinx]+c , then f(x) is equal to

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int{log_e(log_ex)+1/(log_ex)^2}dx is equal to (A) log_e(log_ex)+C (B) xlog_e(log_ex)-x/log_ex+C (C) x/log_ex-log_ex+C (D) log_e(log_ex)-x/log_ex+C

inte^(x)[f(x)+f'(x)]dx=

if int(dx)/(f(x))=log(f(x))^(2)+C then

if int(dx)/(f(x))=log(f(x))^(2)+C then