Home
Class 12
MATHS
inte^xsqrt(e^(2x)+1)dx=...

`inte^xsqrt(e^(2x)+1)dx=`

A

`(e^x)/(4)sqrt(e^(2x)+1)-(1)/(4)log|e^x+sqrt(e^(2x)+1)|+c`

B

`(e^x)/(4)sqrt(e^(2x)+1)+(1)/(4)log|e^x+sqrt(e^(2x)+1)|+c`

C

`(e^x)/(2)sqrt(e^(2x)+1)-(1)/(2)log|e^x+sqrt(e^(2x)+1)|+c`

D

`(e^x)/(2)sqrt(e^(2x)+1)+(1)/(2)log|e^x+sqrt(e^(2x)+1)|+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int e^xsqrt(e^(x)-1)dx

int xsqrt(a^(2)-x^(2))dx=

(i) int (dx)/(e^x+e^(-x)) (ii) int e^x/(e^(2x)+1) dx

" (6) "int(e^(2x))/(e^(2x)+1)dx

int xsqrt(1-x-x^(2)dx)

" (2) "int xsqrt(1+2x^(2))dx

int xsqrt(x^(2)+a^(2))dx=

int(e^(2x))/(1+e^(2x))dx=

int xsqrt(9^(3)+x^(2))dx