Home
Class 12
MATHS
int(sqrt(1+(logx)^2))/(x)dx=...

`int(sqrt(1+(logx)^2))/(x)dx=`

A

`(logx)/(2)sqrt(1+(logx)^2)+(1)/(2)log|logx+sqrt(1+(logx)^2)|+c`

B

`(logx)/(2)sqrt(1+(logx)^2)-(1)/(2)log|logx+sqrt(1+(logx)^2)|+c`

C

`(logx)/(2)sqrt(1+(logx)^2)-(1)/(4)log|logx+sqrt(1+(logx)^2)|+c`

D

`(logx)/(2)sqrt(1+(logx)^2)+(1)/(4)log|logx+sqrt(1+(logx)^2)|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sqrt{1 + (\log x)^2}}{x} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, the differential \( dt = \frac{1}{x} \, dx \) or \( dx = x \, dt = e^t \, dt \). ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ I = \int \sqrt{1 + t^2} \, dt \] ### Step 3: Integrate The integral \( \int \sqrt{1 + t^2} \, dt \) can be solved using the formula: \[ \int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log |x + \sqrt{x^2 + a^2}| + C \] In our case, \( a = 1 \) and \( x = t \): \[ I = \frac{t}{2} \sqrt{t^2 + 1} + \frac{1}{2} \log |t + \sqrt{t^2 + 1}| + C \] ### Step 4: Substitute Back Now we substitute back \( t = \log x \): \[ I = \frac{\log x}{2} \sqrt{(\log x)^2 + 1} + \frac{1}{2} \log |\log x + \sqrt{(\log x)^2 + 1}| + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{\log x}{2} \sqrt{(\log x)^2 + 1} + \frac{1}{2} \log |\log x + \sqrt{(\log x)^2 + 1}| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(16+(logx)^(2)))/(x)dx=?

int(sqrt((2+logx)))/(x)dx

int((logx)^(2))/(x)dx.

int((x+1)(x+logx)^2)/(2x)dx

int((x+1)(x+logx)^(2))/(x)dx=?

int_(1)^(e)((logx)^(2))/(x)dx=?

int(dx)/(xsqrt(1-(logx)^(2))=

int(logx-1)/(x)dx

int(logx)/(x)dx=?

Evaluate the following : (i) int(x+(1)/(x))^(3//2)((x^(2)-1)/(x^(2)))dx " (ii) " int(sqrt(2+logx))/(x)dx (iii) int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx " (iv) " int(cotx)/(sqrt(sinx))dx