Home
Class 12
MATHS
intsqrt((logx)^2+3(logx)+1)/(x)dx=...

`intsqrt((logx)^2+3(logx)+1)/(x)dx=`

A

`(2logx+3)/(4)sqrt((logx)^2+3(logx)+1)-(5)/(4)log|logx+(3)/(2)+sqrt((logx)^2+3(logx)+1)|+c`

B

`(2logx+3)/(4)sqrt((logx)^2+3(logx)+1)-(5)/(8)log|logx+(3)/(2)+sqrt((logx)^2+3(logx)+1)|+c`

C

`(2logx+3)/(4)sqrt((logx)^2+3(logx)+1)+(5)/(4)log|logx+(3)/(2)+sqrt((logx)^2+3(logx)+1)|+c`

D

`(2logx+3)/(4)sqrt((logx)^2+3(logx)+1)+(5)/(8)log|logx+(3)/(2)+sqrt((logx)^2+3(logx)+1)|+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(logx-1)/(x)dx

int(logx)/(x)dx=?

int (logx)^3/(x)dx

int(logx)/(x^3)dx=

int(log(logx))/(x.logx)dx=

int(sqrt(1+(logx)^2))/(x)dx=

int((x+1)(x+logx)^4)/(3x)dx=

intsin(logx)/x^3dx