Home
Class 12
MATHS
int(dx)/(x-x^3)=...

`int(dx)/(x-x^3)=`

A

`(1)/(2)log|(1-x^2)/(x^2)|+c`

B

`log|(1-x)/(x(1+x))|+c`

C

`log|x-x^3|+c`

D

`(1)/(2)log|(x^2)/(1-x^2)|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{x - x^3}\), we will use the method of partial fractions. Here’s a step-by-step solution: ### Step 1: Factor the Denominator We start with the expression in the denominator: \[ x - x^3 = x(1 - x^2) = x(1 - x)(1 + x) \] Thus, we can rewrite our integral as: \[ \int \frac{dx}{x(1 - x)(1 + x)} \] ### Step 2: Set Up Partial Fractions Next, we express the integrand as a sum of partial fractions: \[ \frac{1}{x(1 - x)(1 + x)} = \frac{A}{x} + \frac{B}{1 - x} + \frac{C}{1 + x} \] where \(A\), \(B\), and \(C\) are constants we need to determine. ### Step 3: Clear the Denominator Multiply both sides by the denominator \(x(1 - x)(1 + x)\): \[ 1 = A(1 - x)(1 + x) + Bx(1 + x) + Cx(1 - x) \] ### Step 4: Expand and Collect Terms Expanding the right-hand side gives: \[ 1 = A(1 - x^2) + Bx + Bx^2 + Cx - Cx^2 \] Combining like terms: \[ 1 = A - Ax^2 + (B + C)x + (B - C)x^2 \] ### Step 5: Set Up Equations Now, we equate coefficients from both sides: 1. Constant term: \(A = 1\) 2. Coefficient of \(x\): \(B + C = 0\) 3. Coefficient of \(x^2\): \(-A + B - C = 0\) ### Step 6: Solve the System of Equations From \(A = 1\), we substitute into the other equations: - From \(B + C = 0\), we have \(C = -B\). - Substituting into \(-1 + B - (-B) = 0\) gives us: \[ -1 + 2B = 0 \implies B = \frac{1}{2} \] Thus, \(C = -\frac{1}{2}\). ### Step 7: Write the Partial Fraction Decomposition Now we have: \[ \frac{1}{x(1 - x)(1 + x)} = \frac{1}{x} + \frac{1/2}{1 - x} - \frac{1/2}{1 + x} \] ### Step 8: Integrate Each Term Now we can integrate each term separately: \[ \int \left( \frac{1}{x} + \frac{1/2}{1 - x} - \frac{1/2}{1 + x} \right) dx \] This gives: \[ \int \frac{1}{x} \, dx + \frac{1}{2} \int \frac{1}{1 - x} \, dx - \frac{1}{2} \int \frac{1}{1 + x} \, dx \] ### Step 9: Perform the Integrations Calculating these integrals: 1. \(\int \frac{1}{x} \, dx = \ln |x|\) 2. \(\int \frac{1}{1 - x} \, dx = -\ln |1 - x|\) 3. \(\int \frac{1}{1 + x} \, dx = \ln |1 + x|\) Putting it all together: \[ \ln |x| - \frac{1}{2} \ln |1 - x| - \frac{1}{2} \ln |1 + x| + C \] ### Step 10: Combine the Logarithms Using properties of logarithms: \[ = \ln |x| - \frac{1}{2} \ln |(1 - x)(1 + x)| + C \] This can be rewritten as: \[ = \ln \left( \frac{|x|}{\sqrt{(1 - x)(1 + x)}} \right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{dx}{x - x^3} = \ln \left( \frac{|x|}{\sqrt{1 - x^2}} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(dx)/(x(x^(5)+3))

Evaluate int(x dx)/(x^(3)sqrt(x^(2)-1)).

int(dx)/((x^(3)+3x^(2)+3x+1)sqrt(x^(2)+2x-3))

int(dx)/((x^(3)+3x^(2)+3x+1)sqrt(x^(2)+2x-3))

int(dx)/(x^(3)+3x^(2)+2x)=

int(dx)/(x(1+4x^(3)+3x^(6)))

int(dx)/(x^(3)+x^(4))dx1,334

Evaluate :int(dx)/(x^(3)+x^(2)+x+1)