Home
Class 12
MATHS
int(x+1)/(x^2+5x+6)dx=...

`int(x+1)/(x^2+5x+6)dx=`

A

`log|((x+3)^2)/(x+2)|+c`

B

`log|(x+2)/((x+3)^2)|+c`

C

`2log|(x+3)/(x+2)|+c`

D

`2log|(x+2)/(x+3)|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x+1}{x^2+5x+6} \, dx\), we will use the method of partial fractions. Here’s a step-by-step solution: ### Step 1: Factor the Denominator First, we need to factor the quadratic expression in the denominator: \[ x^2 + 5x + 6 = (x + 2)(x + 3) \] ### Step 2: Set Up Partial Fractions We express the integrand as a sum of partial fractions: \[ \frac{x + 1}{(x + 2)(x + 3)} = \frac{A}{x + 2} + \frac{B}{x + 3} \] where \(A\) and \(B\) are constants to be determined. ### Step 3: Clear the Denominator Multiply both sides by the denominator \((x + 2)(x + 3)\): \[ x + 1 = A(x + 3) + B(x + 2) \] ### Step 4: Expand and Collect Terms Expanding the right-hand side: \[ x + 1 = Ax + 3A + Bx + 2B = (A + B)x + (3A + 2B) \] This gives us two equations by comparing coefficients: 1. \(A + B = 1\) (coefficient of \(x\)) 2. \(3A + 2B = 1\) (constant term) ### Step 5: Solve the System of Equations From the first equation, we can express \(B\) in terms of \(A\): \[ B = 1 - A \] Substituting \(B\) into the second equation: \[ 3A + 2(1 - A) = 1 \\ 3A + 2 - 2A = 1 \\ A + 2 = 1 \\ A = -1 \] Now substituting \(A\) back to find \(B\): \[ B = 1 - (-1) = 2 \] ### Step 6: Write the Partial Fraction Decomposition Now we can write: \[ \frac{x + 1}{(x + 2)(x + 3)} = \frac{-1}{x + 2} + \frac{2}{x + 3} \] ### Step 7: Integrate Each Term Now we can integrate each term separately: \[ \int \left( \frac{-1}{x + 2} + \frac{2}{x + 3} \right) \, dx = \int \frac{-1}{x + 2} \, dx + \int \frac{2}{x + 3} \, dx \] This results in: \[ = -\ln |x + 2| + 2\ln |x + 3| + C \] ### Step 8: Combine the Logarithms Using the properties of logarithms: \[ = \ln \left| \frac{(x + 3)^2}{x + 2} \right| + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{x+1}{x^2+5x+6} \, dx = \ln \left| \frac{(x + 3)^2}{x + 2} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x^(2)-5x+6)dx

int 1/(x^2-5x+6) dx

int(5x-1)/(3x^2+x+2)dx=

int(1)/(2x^(2)+5x+3)dx

int(x^2)/(x^4+5x^2+6)dx=

int(x^(2))/(x^(2)-5x+6)dx=

(i) int (x dx)/(x^2+3x+2) (ii) int x/(x^2+5x+6) dx

int(1)/(6+5x-6x^(2))dx

int(x^(5))/(x^(6)+1)dx

int(x^(6))/(x^(2)+1)dx