Home
Class 12
MATHS
int(x^2)/((x-1)(3x-1)(3x-2))dx=...

`int(x^2)/((x-1)(3x-1)(3x-2))dx=`

A

`(1)/(2)log|x-1|+(1)/(18)log|3x-1|+(4)/(9)log|3x-2|+c`

B

`(1)/(2)log|x-1|-(1)/(18)log|3x-1|+(4)/(9)log|3x-2|+c`

C

`(1)/(2)log|x-1|+(1)/(18)log|3x-1|-(4)/(9)log|3x-2|+c`

D

`(1)/(2)log|x-1|-(1)/(18)log|3x-1|-(4)/(9)log|3x-2|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^2}{(x-1)(3x-1)(3x-2)} \, dx, \] we will use the method of partial fractions. Here’s a step-by-step solution: ### Step 1: Set up the partial fraction decomposition We can express the integrand as: \[ \frac{x^2}{(x-1)(3x-1)(3x-2)} = \frac{A}{x-1} + \frac{B}{3x-1} + \frac{C}{3x-2} \] where \(A\), \(B\), and \(C\) are constants to be determined. ### Step 2: Multiply through by the denominator Multiplying both sides by the denominator \((x-1)(3x-1)(3x-2)\) gives: \[ x^2 = A(3x-1)(3x-2) + B(x-1)(3x-2) + C(x-1)(3x-1) \] ### Step 3: Expand the right-hand side Now we expand the right-hand side: 1. For \(A(3x-1)(3x-2)\): \[ A(9x^2 - 15x + 2) \] 2. For \(B(x-1)(3x-2)\): \[ B(3x^2 - 5x + 2) \] 3. For \(C(x-1)(3x-1)\): \[ C(3x^2 - 4x + 1) \] Combining these, we get: \[ x^2 = (9A + 3B + 3C)x^2 + (-15A - 5B - 4C)x + (2A + 2B + C) \] ### Step 4: Set up the system of equations Now, we equate coefficients from both sides: 1. For \(x^2\): \(9A + 3B + 3C = 1\) 2. For \(x\): \(-15A - 5B - 4C = 0\) 3. For the constant term: \(2A + 2B + C = 0\) ### Step 5: Solve the system of equations From the third equation, we can express \(C\) in terms of \(A\) and \(B\): \[ C = -2A - 2B \] Substituting \(C\) into the first two equations: 1. \(9A + 3B + 3(-2A - 2B) = 1\) \[ 9A + 3B - 6A - 6B = 1 \implies 3A - 3B = 1 \implies A - B = \frac{1}{3} \quad (i) \] 2. \(-15A - 5B - 4(-2A - 2B) = 0\) \[ -15A - 5B + 8A + 8B = 0 \implies -7A + 3B = 0 \implies 3B = 7A \implies B = \frac{7}{3}A \quad (ii) \] Substituting \(B\) from equation (ii) into (i): \[ A - \frac{7}{3}A = \frac{1}{3} \implies -\frac{4}{3}A = \frac{1}{3} \implies A = -\frac{1}{4} \] Now substituting \(A\) back into (ii): \[ B = \frac{7}{3} \left(-\frac{1}{4}\right) = -\frac{7}{12} \] And substituting \(A\) and \(B\) into the expression for \(C\): \[ C = -2\left(-\frac{1}{4}\right) - 2\left(-\frac{7}{12}\right) = \frac{1}{2} + \frac{7}{6} = \frac{3}{6} + \frac{7}{6} = \frac{10}{6} = \frac{5}{3} \] ### Step 6: Write the partial fraction decomposition Thus, we have: \[ \frac{x^2}{(x-1)(3x-1)(3x-2)} = \frac{-\frac{1}{4}}{x-1} + \frac{-\frac{7}{12}}{3x-1} + \frac{\frac{5}{3}}{3x-2} \] ### Step 7: Integrate each term Now we can integrate each term separately: \[ \int \left( \frac{-\frac{1}{4}}{x-1} + \frac{-\frac{7}{12}}{3x-1} + \frac{\frac{5}{3}}{3x-2} \right) dx \] This gives: \[ -\frac{1}{4} \ln |x-1| - \frac{7}{36} \ln |3x-1| + \frac{5}{9} \ln |3x-2| + C \] ### Final Answer Thus, the final answer is: \[ -\frac{1}{4} \ln |x-1| - \frac{7}{36} \ln |3x-1| + \frac{5}{9} \ln |3x-2| + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(x^(3)+2)/((x-1)(x-2)^(3))dx=

int(3x)/((x-1)(x-2)(x-3))dx

int(2x^(3))/((x+1)(x-3)^(2))dx

I= int(3x-2)/((x-1)^(2)(x+1)(x+2))dx

int(3x-2)/((x-1)^(2)(x+1)(x+2))dx

int(3x-2)/((x+1))dx

int(3x)/((x-2)(x+1))dx

int(x^(2)+3x-1)/((x+1)^(2))dx

int(3x+2)/((x-1)(2x+3))dx

int(3x^(2)+1)/((x^(2)-1)^(3))dx