Home
Class 12
MATHS
int(3)/((x^2+1)(x^2+4))dx=...

`int(3)/((x^2+1)(x^2+4))dx=`

A

`tan^(-1)x+(1)/(2)tan^(-1)((x)/(2))+c`

B

`tan^(-1)x-(1)/(2)tan^(-1)((x)/(2))+c`

C

`tan^(-1)x+2tan^(-1)((x)/(2))+c`

D

`tan^(-1)x-2tan^(-1)((x)/(2))+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+2))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/(2) , then (a,b) is

If int(2x^2+3)/((x^2-1)(x^2+4))dx=alog((x-1)/(x+1))+btan^(- 1) (x/2)+C then the values of a and b are respectively (A) 1/2,1/2 (B) 1,1 (C) 1/2,1 (D) None

int(3dx)/((x^(2)+1)(x^(2)+4))=

(i) int 1/((x^2+1)(x^2+4)) dx (ii) int 1/((x^2+1)(x^2+2)) dx

Evaluate: (i) int((x^(3) + 4x^(2) -3x -2))/((x+2)) dx , (ii) int((x^(4) +1)/(x^(2) +1))dx

int(1)/((2x+3)^(2)(4x+5))dx=

int(1)/((2-3x)^(2)(4-5x))dx=

int(2x)/((x^(2)+1)(x^(4)+4))dx