Home
Class 12
MATHS
int(logx)/(x(1+logx)(2+logx))dx=...

`int(logx)/(x(1+logx)(2+logx))dx=`

A

`log|(2+logx)^2/(1+logx)|+c`

B

`log|(1+logx)/(2+logx)^2|+c`

C

`log|(2+logx)/(1+logx)|+c`

D

`log|(1+logx)/(2+logx)|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\log x}{x(1 + \log x)(2 + \log x)} \, dx, \] we will use the substitution method and partial fractions. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \log x \). Then, the differential \( dx \) can be expressed in terms of \( dt \): \[ \frac{dt}{dx} = \frac{1}{x} \implies dx = x \, dt = e^t \, dt. \] Substituting \( x = e^t \) into the integral, we have: \[ I = \int \frac{t}{e^t(1 + t)(2 + t)} e^t \, dt = \int \frac{t}{(1 + t)(2 + t)} \, dt. \] ### Step 2: Partial Fraction Decomposition Next, we will perform partial fraction decomposition on the integrand: \[ \frac{t}{(1 + t)(2 + t)} = \frac{A}{1 + t} + \frac{B}{2 + t}. \] Multiplying through by the denominator \((1 + t)(2 + t)\) gives: \[ t = A(2 + t) + B(1 + t). \] Expanding the right-hand side: \[ t = 2A + At + B + Bt = (A + B)t + (2A + B). \] Now, we can equate coefficients: 1. For \( t \): \( A + B = 1 \) 2. For the constant term: \( 2A + B = 0 \) ### Step 3: Solve the System of Equations From the first equation \( A + B = 1 \), we can express \( B \) in terms of \( A \): \[ B = 1 - A. \] Substituting this into the second equation: \[ 2A + (1 - A) = 0 \implies 2A + 1 - A = 0 \implies A + 1 = 0 \implies A = -1. \] Then substituting \( A \) back to find \( B \): \[ B = 1 - (-1) = 2. \] ### Step 4: Rewrite the Integral Now substituting \( A \) and \( B \) back into the partial fractions: \[ \frac{t}{(1 + t)(2 + t)} = \frac{-1}{1 + t} + \frac{2}{2 + t}. \] Thus, the integral becomes: \[ I = \int \left( -\frac{1}{1 + t} + \frac{2}{2 + t} \right) dt. \] ### Step 5: Integrate Now we can integrate term by term: \[ I = -\int \frac{1}{1 + t} \, dt + 2\int \frac{1}{2 + t} \, dt. \] The integrals are standard: \[ I = -\log |1 + t| + 2\log |2 + t| + C, \] where \( C \) is the constant of integration. ### Step 6: Substitute Back Now substituting back \( t = \log x \): \[ I = -\log |1 + \log x| + 2\log |2 + \log x| + C. \] ### Step 7: Simplify Using properties of logarithms: \[ I = \log \left( \frac{(2 + \log x)^2}{1 + \log x} \right) + C. \] ### Final Answer Thus, the final result for the integral is: \[ I = \log \left( \frac{(2 + \log x)^2}{1 + \log x} \right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(1+logx)/(x(2+log x)(3+logx))dx

Evaluate int(logx)/((1+logx)^(2))dx .

int (log x)/(1+logx)^2 dx

int(1)/(xlogx(2+logx))dx=

int(e^x)/(x)(x(logx)^2+2logx)dx=

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx=

int(dx)/(x(3+logx))=

int1/(x(1-logx)^(2))dx=

Evaluate the following integrals: int(logx)/((1+logx)^(2))dx