Home
Class 12
MATHS
int(1)/((x+1)^2(x^2+1))dx=...

`int(1)/((x+1)^2(x^2+1))dx=`

A

`(1)/(2)log|x+1|+(1)/(2(x+1))-(1)/(4)log|x^2+1|+c`

B

`(1)/(2)log|x+1|-(1)/(2(x+1))+(1)/(4)log|x^2+1|+c`

C

`(1)/(2)log|x+1|-(1)/(2(x+1))-(1)/(4)log|x^2+1|+c`

D

`(1)/(2)log|x+1|+(1)/(2(x+1))+(1)/(4)log|x^2+1|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{1}{(x+1)^2 (x^2+1)} \, dx, \] we will use the method of partial fractions. ### Step 1: Set up the partial fraction decomposition We can express the integrand as: \[ \frac{1}{(x+1)^2 (x^2+1)} = \frac{Ax + B}{(x+1)^2} + \frac{Cx + D}{x^2 + 1}. \] ### Step 2: Clear the denominators Multiplying both sides by \((x+1)^2 (x^2+1)\) gives: \[ 1 = (Ax + B)(x^2 + 1) + (Cx + D)(x + 1)^2. \] ### Step 3: Expand the right-hand side Expanding both terms: 1. \((Ax + B)(x^2 + 1) = Ax^3 + Bx^2 + Ax + B\) 2. \((Cx + D)(x + 1)^2 = (Cx + D)(x^2 + 2x + 1) = Cx^3 + (2C + D)x^2 + (C + 2D)x + D\) Combining these, we have: \[ 1 = (A + C)x^3 + (B + 2C + D)x^2 + (A + C + 2D)x + (B + D). \] ### Step 4: Set up the system of equations Equating the coefficients from both sides gives us the following system of equations: 1. \(A + C = 0\) (coefficient of \(x^3\)) 2. \(B + 2C + D = 0\) (coefficient of \(x^2\)) 3. \(A + C + 2D = 0\) (coefficient of \(x\)) 4. \(B + D = 1\) (constant term) ### Step 5: Solve the system of equations From equation 1, we can express \(C\) in terms of \(A\): \[ C = -A. \] Substituting \(C = -A\) into the other equations: - From equation 2: \[ B + 2(-A) + D = 0 \implies B - 2A + D = 0 \implies D = 2A - B. \] - From equation 3: \[ A - A + 2D = 0 \implies 2D = 0 \implies D = 0. \] Substituting \(D = 0\) into the equation for \(B\): \[ B + 0 = 1 \implies B = 1. \] Now substituting \(B = 1\) back into \(D = 2A - B\): \[ D = 2A - 1 = 0 \implies 2A = 1 \implies A = \frac{1}{2}. \] Now substituting \(A = \frac{1}{2}\) into \(C = -A\): \[ C = -\frac{1}{2}. \] ### Step 6: Summary of coefficients We have found: - \(A = \frac{1}{2}\) - \(B = 1\) - \(C = -\frac{1}{2}\) - \(D = 0\) Thus, the partial fraction decomposition is: \[ \frac{1}{(x+1)^2 (x^2+1)} = \frac{\frac{1}{2}x + 1}{(x+1)^2} - \frac{\frac{1}{2}x}{x^2+1}. \] ### Step 7: Integrate each term Now we can integrate each term separately: 1. \(\int \frac{\frac{1}{2}x + 1}{(x+1)^2} \, dx\) 2. \(-\int \frac{\frac{1}{2}x}{x^2 + 1} \, dx\) #### Integrating the first term Using substitution \(u = x + 1\), \(du = dx\): \[ \int \frac{\frac{1}{2}(u - 1) + 1}{u^2} \, du = \int \frac{\frac{1}{2}u + \frac{1}{2}}{u^2} \, du = \frac{1}{2} \int \frac{1}{u} \, du + \frac{1}{2} \int \frac{1}{u^2} \, du. \] This results in: \[ \frac{1}{2} \ln |u| - \frac{1}{2u} + C_1 = \frac{1}{2} \ln |x + 1| - \frac{1}{2(x + 1)}. \] #### Integrating the second term Using substitution \(v = x^2 + 1\), \(dv = 2x \, dx\): \[ -\frac{1}{2} \int \frac{1}{v} \, dv = -\frac{1}{2} \ln |v| + C_2 = -\frac{1}{2} \ln |x^2 + 1|. \] ### Step 8: Combine results Combining the results, we have: \[ \int \frac{1}{(x+1)^2 (x^2+1)} \, dx = \frac{1}{2} \ln |x + 1| - \frac{1}{2(x + 1)} - \frac{1}{2} \ln |x^2 + 1| + C. \] ### Final Answer Thus, the final answer is: \[ \frac{1}{2} \ln |x + 1| - \frac{1}{2(x + 1)} - \frac{1}{2} \ln |x^2 + 1| + C. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/((x+1)^2(x^2+1))\ dx

(i) int (1)/(x(x+1)^(2))dx (ii) int (1)/((x+1)^(2)(x-1))dx

int(dx)/((x+1)(x^(2)+1))

If int(1)/((x+1)(x+2))dx=int[(A)/((x+1))+(B)/((x+2))]dx then values of A and B are

"int(2x+1)/((x+1)(x+2)^(2))dx

int(1)/((x+1)(x+2))dx

Evaluate: int(x^2+1)/((2x+1)(x^2-1))\ dx

int (2x^2+1)/((x+1)(x-2)) dx

int((1+x))/((1+x^(2)))dx

int(1+x)/(1+x^2)dx