Home
Class 12
MATHS
Calculate last two digit; last three dig...

Calculate last two digit; last three digit of `(17)^256`

Text Solution

Verified by Experts

Since , `17^(256) = (17^(2))^(128) = (289)^(128) = (290-1) ^(128)`
` therefore 17^(156) = ""^(128)C_(0)(290)^(128) - ""^(128)C_(1) (290)^(127) + ""^(128)C_(2) (290)^(126)`
`- ""^(128)C_(3) (290)^(125) +...- ""^(128)C_(125) (290)^(3) + ""^(128)C_(126) (290)^(2) - ""^(128)C_(127) (290) + 1 `
Foe last three digits ,
`17^(256) = (290)^(3) [ ""^(128)C_(0) (290)^(125) - ""^(128)C_(1) (290)^(124) + ""^128C_(2) (290)^(123) - ... - ""^(128)C_(125) (1)] + ""^(128)C_(126) (290)^(2) -""^(128)C_(127) (290) + 1`
` = 1000m + ""^(128)C_(126) (290)^(2) - ""^(128)C_(127) (290) + 1`
where , m is an integer
`= 1000 m + ""^(128)C_(2) (290)^(2) - ""^(125)C_(1) (290)+ 1`
` 1000m + ((128)(127))/(2) (290)^(2) - 128 xx 290 + 1`
` = 1000 m + (128) (127)(290)(145)- (128) (290) + 1`
` = 1000 m + (128) (290) (127xx 145- 1 ) + 1`
` = 1000m + (128) (290) (18414)+ 1`
` 1000m + 683527000 + 680 + 1`
` = 1000 (m + 683527) + 681 `
` therefore ` Last three digits = ` 000 + 681 = 681 `
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Find the last digit,last two digits and last three digits of the number (81)^(25)

Find last three digits in 19^(100)

Find (i) the last digit,(ii) the last two digits, and (iii) the last three digits of 17^(256) .

Find the last three digits in 11^(50)

The last two digit of the number (17)^(10)

The number obtained after dividing the number formed by the last three digits of 17^(256) by 100 is

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Calculate last two digit; last three digit of (17)^256

    Text Solution

    |

  2. The value of (30 0)(30 10)-(30 1)(30 11)+(30 2)(30 12)++(30 20)(30 30)...

    Text Solution

    |

  3. If the coefficient of pth, (p+1)thand (p+2)th terms in the expansion ...

    Text Solution

    |

  4. If the coefficient of x^7 in (ax^2+1/(bx))^11 is equal to the coeffici...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+ ,a n da1=a2=10...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^(n) , n ge 5 , the sum of the ...

    Text Solution

    |

  7. The sum of the series C 20()0-C 20()1+C 20()2-C 20()3+...-...+C 20()(1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The remainder left out when 8^(2n)""(62)^(2n+1) is divided by 9 is (1)...

    Text Solution

    |

  10. For r= 0, 1,.....,10, let Ar,Br, and Crdenote, respectively, the coe...

    Text Solution

    |

  11. So, statement-1 is also true. Stetement-2 is a correct expanation fo...

    Text Solution

    |

  12. The coefficient of x^(7) in the expansion of (1-x-x^(2) + x^(3))^(6) i...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. In the expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))^10 ...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficients of x^(3) and x^(4) in the expansion of (1 + ax + b...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficients in integral powers of x in the binominal expan...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^2))^n , x!=0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |