Home
Class 12
MATHS
If (1 + x)^(n) = C(0) + C(1) x + C(2) x^...

If `(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n)` , prove that
`C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1)` .

Text Solution

Verified by Experts

Here , last term of ` C_(0) + 2C_(1) + 3C_(2) + …+ (n+1) C_(n)` is
`(n +1) C_(n) "i.e."(n=1)` and last term with positive sign.
and ` n + 1 n* 1 + 1`
or`{:("n)n+1(1"),(" "underline(-n)),(" "underline(1)):}`
Here, q = 1 and r = 1
The given series is
`(1 + x)^(n) =C_(0)+ C_(1) x + C_(2) x^(2) + ...+ C_(n)x^(n)`
Now , replacing x by `x^(1)` and multiplying both sides by x , we get
` x(1 + x)^(n)= C_(0) + C_(1) x + C_(2) x^(2)+ ...+ C_(n) x^(n+1) + ...+ (n+1) C_9n) x^(n)`
Putting x = 1 , we get
` n(2)^(n-1)2^(n) = C_(0) + 2C_(1) + 3C_(2) + ...+ (n+1) C_(n)`
Differentiating both sides w.r.t.x, we get
` x* (1 + x)^(n-1) + (1 + x)^(n) *1 = C_(0) + 2C_(1) x + 3C_(2) x^(2) + ...+ (n+1) C_(n) x^(n)`
Putting x = 1 , we get
` n(2)^(n-1) + 2^(n) = C_(0) + 2C_(1) + 3C_(2) + ...+ (n+1) C_(n)`
or ` C_(0) + 2C_(1) + 3C_(2) + ...+ (n+1) C_(n) = (n+2)^(n-1)`
I . Aliter
` LHS = C_(0) + 2C_(1) + 3C_(2) + ...+ (n+1)C_(n)`
` = C_(0) + (1 + 1)C_(1) + (1 +2)C_(2) + ...+ (1 + n)C_(n)`
` = (C_(0) + C_(1) + C_(2) + ...+ C_(n)) + (C_(1) + 2C_(2) + ...+ n C_(n)) " " ` [use example ]
` = 2^(n) + n*2^(n-1) = (n+2)2^(n-1) = RHS `
II .Aliter
LHS ` = C_(0) + 2C_(1) + 3C_(2) + ...+ (n+1) C_(n)`
`= sum_(r=1)^(n+1) r* ""^(n)C_(r-1) = sum_(r=1)^(n+1) (r - 1 + 1)* ""^(n)C_(r-1)`
` = sum_(r=1)^(n+1)(r-1)* ""^(n-1)C_(r)+ ""^(n)C_(r-1)`
` sum_(r=1)^(n+1)n* ""^(n-1)C_(r-2) + sum_(r=1)^(n+1) ""^(n)C_(r-1)`
`[because ""^(n)C_(r-1) = (n)/(r-1) * ""^(n-1)C_(r-2)]`
`=n (0 ""^(n-1)C_(0) + ""^(n-1)C_(1) + ""^(n-1)C_(2) + ...+ ""^(n-1)C_(n-1)) + (""^(n)C_(0) + ""^(n)C_(1) + ""^(n)C_(2) + ...+ ""^(n)C_(n))`
` n* 2^(n-1) + 2^(n) = (n+2)* 2^(n-1) = RHS `
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(0) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " + 3^(2) *C_(3) + …+ n^(2) *C_(n) 1^(2)*C_(1) + 2^(2) *C_(2) = n(n+1)* 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + ... + C_(n) x^(n) , then value of C_(0)^(2) + 2C_(1)^(2) + 3C_(2)^(2) + ... + (n + 1) C^(2)n is

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +… + C(n) x^(n) , prove th...

    Text Solution

    |

  2. The value of (30 0)(30 10)-(30 1)(30 11)+(30 2)(30 12)++(30 20)(30 30)...

    Text Solution

    |

  3. If the coefficient of pth, (p+1)thand (p+2)th terms in the expansion ...

    Text Solution

    |

  4. If the coefficient of x^7 in (ax^2+1/(bx))^11 is equal to the coeffici...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+ ,a n da1=a2=10...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^(n) , n ge 5 , the sum of the ...

    Text Solution

    |

  7. The sum of the series C 20()0-C 20()1+C 20()2-C 20()3+...-...+C 20()(1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The remainder left out when 8^(2n)""(62)^(2n+1) is divided by 9 is (1)...

    Text Solution

    |

  10. For r= 0, 1,.....,10, let Ar,Br, and Crdenote, respectively, the coe...

    Text Solution

    |

  11. So, statement-1 is also true. Stetement-2 is a correct expanation fo...

    Text Solution

    |

  12. The coefficient of x^(7) in the expansion of (1-x-x^(2) + x^(3))^(6) i...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. In the expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))^10 ...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficients of x^(3) and x^(4) in the expansion of (1 + ax + b...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficients in integral powers of x in the binominal expan...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^2))^n , x!=0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |