Home
Class 12
MATHS
If (1 + x)^(n) = C(0) + C(1) x + C(2) x...

If ` (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2)`
` + …+ C_(n) x^(n)," prove that " + 3^(2) *C_(3) + …+ n^(2) *C_(n)`
` 1^(2)*C_(1) + 2^(2) *C_(2) = n(n+1)* 2^(n-2)` .

Text Solution

Verified by Experts

Here . Last term of `1^(2) *C_(1) + 2^(2)*C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) ` is
` n^(2)*C_(n) " i.e.,n^(2)` . Linear factor of `n^(2)` are n and, [start
always with greater fector ] and last term with positive sign.
and `{:(n=n*1+0" or " " n)n(1"),(" "underline(-n)),(" "underline(0)):}`
Here ,q= 1 and r=0
Then ,the given series is
`(1+x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +C_(3)x^(3) + ...+ C_(n)x^(n)`
On differentiating both sides w.r.t.x, we get
`nx(1+x)^(n-1) = C_(1)+ 2C_(2)x + 3C_(3)x^(2) + ...+ n C_(n)x^(n-1) `...(i)
and in last , numberical is n` C_(n) ` i.e. , and power
`(1+x) "is" n-1`
Then ` {:(n=(n-1)*1+0" or " " n)n(1"),(" "underline(-+)),(" "underline(1)):}`
Here .q = 1 and r=1
Now , multiplying both sides by x in Eq .(i) , then
`nx (1+x)^(n-1) = C_(1)x+2C_(2)x^(2) + 3C_(2)x^(3) +...+n^(2)C_(n) x^(n-1)`
Differentiating on both sides w.r.t..x, we get
`n{x*(n-1)(1+x)^(n-2)+(1+x)^(n-1)*1}`
` = C_(1)*1+2^(2)C_(2)x + 3^(2)C_(3)x^(2) + ...+ n^(2)C_(n)x^(n-1)`
Putting x = 1 ,we get
`n{1*(n-1)*2^(n-2)+ 2^(n-1)} = 1^(2)*C_(1) + 2^(3) *C_(2) + 3^(2) *C_(3)+...+n^(2) *C_(n)`
or `1^(2) *C_(1) +2^(2) *C_(2) + 3^(2)*C_(3) +...+ n^(2) *C_(n) = n (n+1)2^(n-2)`
Aliter
`LHS = 1^(2) *C_(1) + 2^(2) *C_(2) + 3^(2)*C_(3) + ...+ n^(2) *C_(n)`
` sum_(r=1)^(n) r^(2)*""^(n)C_(r) = sum_(r=1)^(n) r^(2) *(n)/(r) (""^(n-1)C_(r-1)`
` [because ""^(n)C_(r) = (n)/(r) .""^(n-1)C_(r-1)]`
`= sum_(r=1)^(n) r*""^(n-1)C_(r-1) = n sum_(r=1)^(n) {(r-1)+1}*""^(n-1)C_(r-1)`
` = n sum_(r=1)^(n)(r-1)*""^(n-1)C_(r-1) +n sum_(r=1)^(n) ""^(n-1)C_(r-1)`
` = n sum_(r-1)^(n) (n-1)*""^(n-2)C_(r-2) + n sum_(r=1)^(n) ""^(n-3)C_(r-1)`
`= (n-1)sum_(r=1)^(n) ""^(n-2)C(r-2) + n sum_(r=1)^(n) ""^(n-1)C_(r-1)`
` = n(n-1)(0+""^(n-2)C_(0) + ""^(n-2)C_(1) + ""^(n-2)C_(2) + ...+ ""^(n-2)C_(n-2)) + n(""^(n-1)C_(0) +""^(n-1)C_(1) + ""^(n-1)C_(2) + ...+ ""^(n-1)C_(n-1))`
`= n(n-1) *2^(n-2) + n*2^(n-1) = n (n+1) 2^(n-2) = RHS `
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(0) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , prove that C_(1)^(2) + 2C_(2)^(2) + 3C_(3)^(2) + ..+ nC_(n)^(2) = ((2n-1)!)/(((n-1)!)^(2))

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + … + C_(n) x^(n) , Show that (2^(2))/(1*2) C_(0) + (2^(3))/(2*3) C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_n)/((n+1)(n+2))= (3^(n+2)-2n-5)/((n+1)(n+2))

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) + …+ C(n) x^(n)," prov...

    Text Solution

    |

  2. The value of (30 0)(30 10)-(30 1)(30 11)+(30 2)(30 12)++(30 20)(30 30)...

    Text Solution

    |

  3. If the coefficient of pth, (p+1)thand (p+2)th terms in the expansion ...

    Text Solution

    |

  4. If the coefficient of x^7 in (ax^2+1/(bx))^11 is equal to the coeffici...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+ ,a n da1=a2=10...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^(n) , n ge 5 , the sum of the ...

    Text Solution

    |

  7. The sum of the series C 20()0-C 20()1+C 20()2-C 20()3+...-...+C 20()(1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The remainder left out when 8^(2n)""(62)^(2n+1) is divided by 9 is (1)...

    Text Solution

    |

  10. For r= 0, 1,.....,10, let Ar,Br, and Crdenote, respectively, the coe...

    Text Solution

    |

  11. So, statement-1 is also true. Stetement-2 is a correct expanation fo...

    Text Solution

    |

  12. The coefficient of x^(7) in the expansion of (1-x-x^(2) + x^(3))^(6) i...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. In the expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))^10 ...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficients of x^(3) and x^(4) in the expansion of (1 + ax + b...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficients in integral powers of x in the binominal expan...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^2))^n , x!=0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |