Home
Class 12
MATHS
Prove that :C(0)-3C(1)+5C(2)- ………..(-1)^...

Prove that :`C_(0)-3C_(1)+5C_(2)- ………..(-1)^n(2n+1)C_(n)=0`

Text Solution

Verified by Experts

The numberical value of last term of
` C_(n) - 3C_(1) + 5C_(2) - …+ (-1)^(n) (2n+1) C_(n) " is" (2n+1) C_(n)`
i.e. ` (2n+1)`
and `2n +1 = 2*n+1` or
` {:("n)(2n+ 1(2"),(" "underline(-2n)),(" "underline(1)):}`
Here , q = 2 and r = 1
The given series
` (1 + x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + C_(3) x^(3) + ...+ C_(n) x^(n)` now ,
replacing by `x^(2)` , then we get
`(1 + x^(2))^(n) = C_(0) + C_(1)x^(2) + C_(2)x^(4) + ...+ C_(n) x^(2n)`
On multiplying both sides by x , we get
` x (1 + x^(2))^(n) = C_(0)x + C_(1)x^(3) + C_(2) x^(3) + C_(2) x^(5)+ ...+ C_(n) x^(2n +1)`
On differentiating both sides w.r.t.x, we get
` x*n (1 + x^(2)^(n-1) 2x + (1 + x^(2))^(n)*1 = C_(0) + 3C_(1) x^(2) + 5C_(2) x^(4) + ...+ (2n +1) C_(n) x^(2n)`
Putting x = i in both sides , we get
` 0 + 0 = C_(0) - 3C_(1) + 5C_(2) - ...+ (2n+1) (-1)^(n) C_(n)`
or ` C_(0)- 3 C_(1) + 5C_(2) - ...+ (-1)^(n) (2n+1) C_(n) = 0 `
I Aliter
` LHS = C_(0) - 3C_(1) + 5C_(2) - ...+ (2n+1) (-1)^(n) C_(n)`
`= C_(0) - (1 + 2) C_(1) + (1 + 4) C_(2) - ...+ (-1)^(n) (1 + 2n)C_(n)`
`= (C_(0) - C_(1) + C_(2) - ...+ (-1)^(n)C_(n)) - 2n(C_(1) - 2C_(2) + ...+ (-1)^(n-1) n*C_(n))`
` = (1-1)^(n) - 2 *0 " " ` [ from Example ]
= 0 = RHS
II. Aliter
` LHS = C_(0) - 3C_(1) + 5C_(2) -...+ (-1)^(n) (2n+1) C_(n)`
`= sum_(r=1)^(n)(-1)^(r) (2r+1)""^(n)C_(r) = sum_(r=1)^(n) (-1)^(r) [2r*""^(n)C_(r) + ""^(n)C_(r)]`
` = 2 sum_(r=1)^(n) *""^(n-1)C_(r-1)+ sum_(r=1)^(n) (-1)^(r) *""^(n)C_(r)` .
` = 2n (1-n)^(n-1) + (1 - 1)^(n) = 0 + 0 = 0 = RHS `
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

prove that :C_(0)^(2)+3C_(1)^(@)+5C_(2)^(2)+...+(2n+1)C_(n)^(2)=((n+1)2n!)/((n!)^(2))

C_(0)-3C_(1)+5c_(3)+....+(-1)^(n)(2n+1)C_(n) is equal to

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(2)+C_(4)x^(4)...+C_(n)x^(n),n>=0 prove that C_(0)-2^(2)C_(1)+3^(2)C_(2)+...+(-1)^(n)(n+1)^(2)C_(n)=0

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

Prove that C_(0)2^(2)C_(1)+3C_(2)4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)C_(n)=0 where C_(r)=nC_(r)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

Prove that C_(0)^(2)+C_(1)^(2)+...C_(n)^(2)=(2n!)/(n!n!)

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Prove that :C(0)-3C(1)+5C(2)- ………..(-1)^n(2n+1)C(n)=0

    Text Solution

    |

  2. The value of (30 0)(30 10)-(30 1)(30 11)+(30 2)(30 12)++(30 20)(30 30)...

    Text Solution

    |

  3. If the coefficient of pth, (p+1)thand (p+2)th terms in the expansion ...

    Text Solution

    |

  4. If the coefficient of x^7 in (ax^2+1/(bx))^11 is equal to the coeffici...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+ ,a n da1=a2=10...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^(n) , n ge 5 , the sum of the ...

    Text Solution

    |

  7. The sum of the series C 20()0-C 20()1+C 20()2-C 20()3+...-...+C 20()(1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The remainder left out when 8^(2n)""(62)^(2n+1) is divided by 9 is (1)...

    Text Solution

    |

  10. For r= 0, 1,.....,10, let Ar,Br, and Crdenote, respectively, the coe...

    Text Solution

    |

  11. So, statement-1 is also true. Stetement-2 is a correct expanation fo...

    Text Solution

    |

  12. The coefficient of x^(7) in the expansion of (1-x-x^(2) + x^(3))^(6) i...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. In the expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))^10 ...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficients of x^(3) and x^(4) in the expansion of (1 + ax + b...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficients in integral powers of x in the binominal expan...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^2))^n , x!=0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |