Home
Class 12
MATHS
If (1 + x)^(n) = C(0) + C(1) x + C(2) x^...

If `(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3)`
` + ...+ C_(n)x^(n)` , prove that ` (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + …= (2^(n+1)-1)/(n+1)` .

Text Solution

Verified by Experts

We know that , from Example
`C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) + (C_(4))/(5) + (C_(5))/(6) + ...= (2^(n+1) -1)/(n+1)` ...(i)
and `C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) + (C_(4))/(5) + (C_(5))/(6) + ...= (1)/(n+1)` ...(ii)
On subtracting Eq.(ii) from Eq.(i) , we get
`2((C_(1))/(2) + (C_(3))/(4) - (C_(3))/(5)+ ...) = (2^(n+1) -2)/(n+1)`
On dividing each sides by 2, we get
`(C_(1))/(2) + (C_(3))/(4) - (C_(3))/(5)+ ... = (2^(n)-1)/(n+1)`
I. Aliter ` LHS = (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + ...`
` = (n)/(1*2) + (n(n-1)(n-2))/(1*2*3*4) `
` + (n(n-1)(n-2)(n-3)(n-4))/(1*2*3*4*5*6) + ...`
`= (1)/(n+1) [((n+1)n)/(1*2) + ((n+1)n(n-1)(n-2))/(1*2*3*4) + ((n+1)n(n-1)(n-2) (n-3)(n-4))/(1*2*3*4*5*6)+...]`
Put n+ 1 = N , then
`LHS = (1)/(N)[(N(N-1))/(2!)+ (N(N-1)(N-2)(N-3))/(4!)+ (N(N-1)(N-2)(N-3)(N-4)(N-5))/(6!)+...]`
`= (1)/(N) [""^(N)C_(2)+ ""^(N)C_(4) + ""^(N)C_(6)+ ...]`
`= (1)/(N)[(""^(N)C_(0) + ""^(N)C_(2) + ""^(N)C_(4)+ ""^(N)C_(6)+ ...)- ""^(N)C_(0)]`
` = (1)/(N) [ 2^(N-1) -1] = (2^(n)-1)/(n+1) = RHS`
II.Aliter
`LHS = (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + ...`
Case I If n is odd say ` n = 2m + 1 ,AA m iin W `, then
`LHS = sum_(r=1)^(m) (""^(2m+1)C_(2r+1))/(2r + 2) = sum_(r=0)^(m)(""^(2m+2)C_(2r+2))/(2m+2) " "[because (""^(2m+2)C_(2r+2))/(2m+1) = (""^(2m+1)C_(2r+1))/(2r + 2)]`
`= (1)/((2m+2)) (""^(2m+2)C_(2) + ""^(2m+2)C_(4) + ...+ ""^(2m+2)C_(2m +2))`
` = (1)/((2m+2)) * (2^(2m +2-1" _ "2m +1)C_(0)) = (2^(n) -1)/(n+1)" " [because 2m + 1 = n]` = RHS
Case II If n is even say ` n = 2m, AA m in N` , then
`LHS = sum_(r=0)^(m-1) (""^(2m )C_(2r +1))/((2r +2)) = sum_(r=0)^(m-1) (""^(2m+1 )C_(2r +2))/((2r +1))" " [because (""^(2m+1 )C_(2r +2))/(2m +1)= (""^(2m )C_(2r +1))/(2m +2)]`
`= (1)/((2m+1)) sum_(r=0)^(m-1) ""^(2m+1)C_(2r +2)`
`= (1)/((2m +1))(""^(2m+1)C_(2) + ""^(2m+1)C_(4) + ""^(2m+1)C_(6) + ...+""^(2m+1)C_(2n))`
`= (1)/((2m +1))*(2^(2m +1-1" - "2m+1)C_(0)) `
` (2^(n) -1)/(n+1) = RHS " " [ because n = 2 m] `
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , show that C_(1) - (C_(2))/(2) + (C_(3))/(3) - …(-1)^(n-1) (C_(n))/(n) = 1 + (1)/(2) + (1)/(3) + …+ (1)/(n) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , prove that C_(1)^(2) + 2C_(2)^(2) + 3C_(3)^(2) + ..+ nC_(n)^(2) = ((2n-1)!)/(((n-1)!)^(2))

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , find the sum of the seriesd (C_(0))/(2) -(C_(1))/(6) + (C_(2))/(10) + (C_(3))/(14) -...+ (-1)^(n) (C_(n))/(4n+2) .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(0) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) + C(3)x^(3) + ...+ C(n)...

    Text Solution

    |

  2. The value of (30 0)(30 10)-(30 1)(30 11)+(30 2)(30 12)++(30 20)(30 30)...

    Text Solution

    |

  3. If the coefficient of pth, (p+1)thand (p+2)th terms in the expansion ...

    Text Solution

    |

  4. If the coefficient of x^7 in (ax^2+1/(bx))^11 is equal to the coeffici...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+ ,a n da1=a2=10...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^(n) , n ge 5 , the sum of the ...

    Text Solution

    |

  7. The sum of the series C 20()0-C 20()1+C 20()2-C 20()3+...-...+C 20()(1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The remainder left out when 8^(2n)""(62)^(2n+1) is divided by 9 is (1)...

    Text Solution

    |

  10. For r= 0, 1,.....,10, let Ar,Br, and Crdenote, respectively, the coe...

    Text Solution

    |

  11. So, statement-1 is also true. Stetement-2 is a correct expanation fo...

    Text Solution

    |

  12. The coefficient of x^(7) in the expansion of (1-x-x^(2) + x^(3))^(6) i...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. In the expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))^10 ...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficients of x^(3) and x^(4) in the expansion of (1 + ax + b...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficients in integral powers of x in the binominal expan...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^2))^n , x!=0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |