Home
Class 12
MATHS
3C0+3^2(C1)/2+3^3(C2)/3+.............3^(...

`3C_0+3^2(C_1)/2+3^3(C_2)/3+.............3^(n+1)*(C_n)/(n+1)` eqaul to

Text Solution

Verified by Experts

`because (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + ...+ C_(n) x^(n) `...(i)
Integrating on both sides of Eq. (i) within limits 0 to , we get
`int_(0)^(3)(1 + x)^(n) dx = int_(0)^(3)(C_(0) + C_(1)x + C_(2)x^(2) + C_(3) x^(3) + ...+ C_(n) x^(n)) dx `
`rArr [((1+ x)^(n+1))/(n+1)]_(0)^(3) = [C_(0) x+ (C_(1) x^(2))/(2) + (C_(2) x^(3))/(3) + (C_(3)x^4)/(4) + ...+ (C_(n) x^(n+1))/(n+1)]_(0)^(3)`
`rArr (4^(n+1)-1)/(n+1) = 3C_(0) + (3^(2)C_(1))/(2) + (3^(3)C_(2))/(3) + (3^(4)C_(3))/(4) + ...+ (3^(n+1)C_(n))/(n+1)`
Hence ,
`3C_(0) + (3^(2)C_(1))/(2) + (3^(3) C_(2))/(3) + (3^(4)C_(3))/(4) + ...+ (3^(n+1) C_(n))/(n+1) = (4^(n+1)-1)/(n+1)`
I.Aliter
`LHS = 3C_(0) + (3^(2)C_(1))/(2) + (3^(2) C_(2))/(3) + (3^(4) C_(3))/(4) + ...+ (3^(n+1)C_(n))/(n+1) `
`= 3.1 + (3^(2) *n)/(2) + (3^(3).(n-1))/(1*2*3) + (3^(4) .n(n-1)(n-2))/((1*2*3*4) ) + ...+ (3^(n+1))/(n+1)`

`= (1)/((n+1))[3*(n+1)+(3^(2)(n+1)n)/(1*2) + (3^(3) (n+1) n(n-1))/(1*2*3) + (3^(4) (n+1)n(n-1)(n-2))/(1*2*3*4) + ..+ 3^(n+1)]`
Put n + 1 = N , then
`LHS= (1)/(N) [3N + (3^(2) N(N-1))/(2!) + (3^(3)N(N-1)(N-2))/(3!)+ (3^(3)N(N-1)(N-2)(N-3))/(4!)+...+ 3^(N)]`
`= (1)/(N)[""^(N)C_(1) (3) + ""^(N)C_(2) (3)^(2) + ""^(N)C_(3) (3)^(3) + ...+ ""^(N)C_(N) (3)^(N) ]`
` = (1)/(N)[""^(N)C_(0) + ""^(N)C_(1)(3) + ""^(N)C_(2)(3)^(2) + ""^(N)C_(3) (3)^(3) + ...+ ""^(N)C_(n) (3)^(N) - ""^(N)C_(0)]`
` = (1)/(N){(1+3)^(N)-1} = (4^(N) -1)/(N) = (4^(n+1)-1)/(n+1) = RHS `
`LHS = 3C_(0) + 3^(2) (C_(1))/(2) + (3^(3) C_(2))/(3) + (3^(4)C_(3))/(4) + ...+ (3^(n+1)C_(n))/(n+1)`
`= sum_(r=0)^(n) (3^(r+1)*""^(n)C_(r))/((r+1))= sum_(r=0)^(n) (3^(r+1)*""^(n+1)C_(r+1))/((n+1)) " "[because (""^(n+1)C_(r+1))/(n+1) = (""^(n)C_(r))/(r+1)]`
`= (1)/((n+1)) sum_(r=0) ^(n) ""^(n+1)C_(r+1) *3^(r+1)`
`= (1)/((n+1)) (""^(n+1)C_(1) *3+""^(n+1)C_(2)*3^(2) + ""^(n+1)C_(3) *3^(3) + ""^(n+1)C_(n+1) *3^(n+1))`
`= (1)/((n+1)) [(1 + 3)^(n+1" - " n+1)C_(0)]`
` = (4^(n+1)-1)/(n+1) = RHS `
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

C0-(C1)/(2)+(C2)/(3)-............+(-1)^(n)(Cn)/(n+1)=(1)/(n+1)

C_(0)-(C_(1))/(2)+(C_(2))/(3)-............(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+.........(C_(n))/(n+1)=

2C_0 + 2^2 (C_1)/(2) + 2^3 (C_2)/(3) + ………. + 2^(n+1) (C_n)/(n+1) = (3^(n+1) - 1)/(n+1)

p*C_(0)+p^(2)(C_(1))/(2)+p^(3)(C_(2))/(3)+...+p^(n+1)*(C_(n))/(n+1)=((p+1)^(n+1)-1)/(n+1)

Statement-1: (C_(0))/(2.3)- (C_(1))/(3.4) +(C_(2))/(4.5)-.............+............+(-1)^(n) (C_(n))/((n+2)(n+3))= (1)/((n+1)(n+2)) Statement-2: (C_(0))/(k)- (C_(1))/(k+1) +(C_(2))/(k+3)+............+(-1)^(n) (C_(n))/(k+n)=int_(0)^(1)x^(k-1) (1 - x)^(n) dx

C_ (0) ^ (2) + 2C_ (1) ^ (2) + 3.C_ (2) ^ (2) + ............ + (n + 1) C_ (n ) ^ (2) =

4C_(0)+(4^(2))/(2)*c_(1)+(4^(3))/(3)c_(2)+............+(4^(n+1))/(n+1)C_(n)=(5^(n+1)-1)/(n+1)

C_(0)-(C_(1))/(2)+(C_(2))/(3)-......+(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

(C_(0))/(1.2)+(C_(1))/(2.3)+(C_(2))/(3.4)+......*(C_(n))/((n+1)(n+2))=

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. 3C0+3^2(C1)/2+3^3(C2)/3+.............3^(n+1)*(Cn)/(n+1) eqaul to

    Text Solution

    |

  2. The value of (30 0)(30 10)-(30 1)(30 11)+(30 2)(30 12)++(30 20)(30 30)...

    Text Solution

    |

  3. If the coefficient of pth, (p+1)thand (p+2)th terms in the expansion ...

    Text Solution

    |

  4. If the coefficient of x^7 in (ax^2+1/(bx))^11 is equal to the coeffici...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+ ,a n da1=a2=10...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^(n) , n ge 5 , the sum of the ...

    Text Solution

    |

  7. The sum of the series C 20()0-C 20()1+C 20()2-C 20()3+...-...+C 20()(1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The remainder left out when 8^(2n)""(62)^(2n+1) is divided by 9 is (1)...

    Text Solution

    |

  10. For r= 0, 1,.....,10, let Ar,Br, and Crdenote, respectively, the coe...

    Text Solution

    |

  11. So, statement-1 is also true. Stetement-2 is a correct expanation fo...

    Text Solution

    |

  12. The coefficient of x^(7) in the expansion of (1-x-x^(2) + x^(3))^(6) i...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. In the expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))^10 ...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficients of x^(3) and x^(4) in the expansion of (1 + ax + b...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficients in integral powers of x in the binominal expan...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^2))^n , x!=0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |