Home
Class 12
MATHS
Prove that C0Cr+C-1 C(r+1)+ C2 C(r+2)+....

Prove that `C_0C_r+C-1 C_(r+1)+ C_2 C_(r+2)+...............+c_(n-r) C_n=((2n)!)/((n-r)!(n+r)!)`

Text Solution

Verified by Experts

i.e., ` r - 0 = r + 1 - 1 = r + 2 - 2 = …= n -(n-r) = r ` Given ,
` (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) + …+ C_(n-r) x^(n-r) + …+ C_(n) x^(n)` …(i)
Now ,
` (x + 1)^(n) = C_(0) x^(n) + C_(1) x^(n-1) + C_(2) x^(n-2) + ...+ C_(r) x^(n-r) + C_(r+1) x^(n-r-1) + C_(r+2) x^(n-r-2) + ...C_(n)` ...(ii)
On multiplying Eqs.(i) and (ii) , we get
` (1 +x)^(2n) = (C_(0) + C_(1) x + C_(2)x^(2) + ... + C_(n-r) x^(n-r) + ...+ C_(n) x^(n)) xx(C_(0) x^(n) + C_(1) x^(n-1)`
`+ C_(2) x^(n-2) + ...+ C_(r) x^(n-r) + C_(r+1)x^(n-r-1)`
` + C_(r+2) x^(n-r-2) + ...+ C_(n))` ...(iii)
Now , coefficient of `x^(n-r)` on LHS of Eq .(iii) ` = ""^(2n)C_(n-r)`
` = (2n!)/((n-r)!(n+r)!)`
and coefficient of ` x^(n-r)` on RHS of Eq .(iii)
`= C_(0) C_(r) + C_(1) C_(r+1) + C_(2) C_(r+2) + ...+ C_(n-r) C_(n)`
But Eq.(iii) is an identity , therefore cefficient of ` x^(n-r)` in
RHS = coefficient of `x^(n-r)` in LHS
` rArr C_(0) C_(r) + C_(1) C_(r+1) + C_(2) C_(r+2) + ...+ C_(n-r) C_(n)`
` = (2n!)/((n-r)!(n+r)!)`
Aliter Given ,
` (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + ...+ C_(r) x^(r) + C_(r+1) x^(r+1) + C_(r + 2)x^(r+2) + ...+ C_(n-r) x^(r) + ...+ C_(n) x^(n) `...(i) Now , `(1+(1)/(x))^(n) = C_(0) + (C_(1))/(x) + (C_(2))/(x^(2)) + ...+ (C_(r))/(x^(r))+ (C_(r +1))/(x^(r+1)) + (C_(r +2))/(x^(r+2))+ ...+ (C_(n-r))/(x^(n-r) ) +...+ (C_(n))/(x^(n))` ...(ii)
On multiplying Eqs.(i) and (ii) , we get
`((1 +x)^(2n))/(x^(n)) = (C_(0) + C_(1)x + C_(2) x^(2) + ...+ C_(r) x^(r) + C_(r+1) x^(n-r) + ... + C_(n) x^(n))`
`xx(C_(0) + (C_(1))/(x) + (C_(2))/(x^(2)) + ...+ (C_(r))/(x^(r)) + (C_(r +1))/(x^(r +1)) + (C_(r+2))/(x^(r +2)) + ...+ (C_(n-r))/(x^(n-r)) + ...+ (C_(n))/(x^(n)))`...(iii)
Now , coefficient of `(1)/(x^(r))` in RHS
`(C_(0) C_(r) + C_(1)C_(r+1) + C_(2) C_(r +2) + ...+ C_(n-r)C_(n))`
` therefore ` Coefficient of `(1)/(x^(r))` in LHS = Coefficient of ` x^(n-r) ` in
But Eq.(iii) is an identity , therefore ceofficients of `(1)/(x^(r))` in
` rArr C_(0) C_(r) + C_(1) C_(r +1) + C_(2) C_(r+2) + ...+ C_(n-r)C_(n)`
` = (2n!)/((n-r)(n+r)!)`
Corollary I For r = 0
` C_(0)^(2) + C_(1)x^(2) + C_(2) x^(2) + ...+ C_(n)^(2)= (2n!)/((n!)^(2))`
Corollary II for r = 1
`C_(0)C_(1) + C_(1) C_(2) + C_(2) C_(3) + ...+ C_(n-1) C_(n) =(2n!)/((n-1)!(n+1)!)` .
Corollary III For r = 2
`C_(0)C_(1) + C_(1) C_(3) + C_(2) C_(4) + ...+ C_(n-2) C_(n)= (2n!)/((n-2)!(n+2)!)` .
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

Prove that nC_(r)+n-1C_(r)+n-2C_(r)+.......+rC_(r)=n+1C_(1)

C_(0)-C_(1)+C_(2)-C_(3)+......+(-1)^(r)C_(r)=((-1)^(r)(n-1)!)/(r!*(n-r-1)!)

Prove that : .^(n-1)C_(r)+.^(n-2)C_(r)+.^(n-3)C_(r)+.........+.^(r)C_(r)=.^(n)C_(r+1) .

Prove that ""^(n)C_(r )+2""^(n)C_(r-1)+ ""^(n)C_(r-2)= ""^(n+2)C_(r ) .

Prove that ^nC_(r)+^(n-1)C_(r)+...+^(r)C_(r)=^(n+1)C_(r+1)

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Prove that C0Cr+C-1 C(r+1)+ C2 C(r+2)+...............+c(n-r) Cn=((2n)...

    Text Solution

    |

  2. The value of (30 0)(30 10)-(30 1)(30 11)+(30 2)(30 12)++(30 20)(30 30)...

    Text Solution

    |

  3. If the coefficient of pth, (p+1)thand (p+2)th terms in the expansion ...

    Text Solution

    |

  4. If the coefficient of x^7 in (ax^2+1/(bx))^11 is equal to the coeffici...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+ ,a n da1=a2=10...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^(n) , n ge 5 , the sum of the ...

    Text Solution

    |

  7. The sum of the series C 20()0-C 20()1+C 20()2-C 20()3+...-...+C 20()(1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The remainder left out when 8^(2n)""(62)^(2n+1) is divided by 9 is (1)...

    Text Solution

    |

  10. For r= 0, 1,.....,10, let Ar,Br, and Crdenote, respectively, the coe...

    Text Solution

    |

  11. So, statement-1 is also true. Stetement-2 is a correct expanation fo...

    Text Solution

    |

  12. The coefficient of x^(7) in the expansion of (1-x-x^(2) + x^(3))^(6) i...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. In the expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))^10 ...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficients of x^(3) and x^(4) in the expansion of (1 + ax + b...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficients in integral powers of x in the binominal expan...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^2))^n , x!=0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |