Home
Class 12
MATHS
Prove that (""^(2n)C(0))^(2)-(""^(2n)C(1...

Prove that `(""^(2n)C_(0))^(2)-(""^(2n)C_(1))^(2)+(""^(2n)C_(2))^(2)-…+(""^(2n)C_(2n))^(2)=(-1)^(n)*""^(2n)C_(n)`.

Text Solution

Verified by Experts

Since , `(1-x)^(2n) = ""^(2n)C_(0) - ""^(2n)C_(1)x + ""^(2n)C_(2) x^(2) - ...+ (-1)^(2n) *""^(2n)C_(2n) x^(2n)`
or `(1-x)^(2n) = ""^(2n)C_(0) - ""^(2n)C_(1)x + ""^(2n)C_(2) x^(2) - ...+ ""^(2n)C_(2n) x^(2n)` ...(i)
and ` (x +1)^(2n) = ""^(2n)C_(0) x^(2n) + ""^(2n)C_(1) + x^(2n-1) + ...+ ""^(2n)C_(2n) `... (ii)
`(x^(2) -1)^(2n) = (""^(2n)C_(0)- ""^(2n)C_(1)x + ""^(2n)C_(2)x^(2) - ...+ ""^(2n)C_(2n) x^(2n))`
`xx(""^(2n)C_(0)x^(2n) + ""^(2n)C_(1)x^(2n-1)+""^(2n)C_(2)x^(2n-2) + ...+ ""^(2n)C_(2n) )` ...(iii)
Now coefficient of `x^(2n)` in RHS
` = (""^(2n)C_(0))^(2) - (""^(2n)C_(1))^(2) + (""^(2n)C_(2))^(2) - ...+ (""^(2n)C_(2n))^(2)`
Now ,LHS can also be written as `(1 + x^(2))^(2n)`.
` therefore ` General term in LHS , ` T_(r+1) = ""^(2n)C_(r) (-x^(2))^(r)`
Putting r = n , we get ` T_(n+1) = (-1)^(n) * ""^(2n)C_(n) x^(2n)`
` rArr " Coefficient of " x^(2n) ` in LHS ` = (-1)^(n) *""^(2n)C_(n)`
But Eq.(iii) is an identity , therefore coefficient of ` x^(2n)` in
RHS = coefficient of ` x^(2n)` LHS
`rArr (""^(2n)C_(0))^(2) - (""^(2n)C_(1))^(2) + (""^(2n)C_(2))^(2) - ...+ (""^(2n)C_(2n))^(2n)`
` = (-1)^(n)*""^(2n)C_(n)`
Aliter
Since , `(1 + x)^(2n) + ""^(2n)C_(0) + ""^(2n)C_(1)x + ""^(2n)C_(2)x^(2) + ...+ ""^(2n)C_(2n) x^(2n) ...`(i)
and ` (1 - (1)/(x))^(2n) = ""^(2n)C_(0) = (""^(2n)C_(1))/(x) + (""^(2n)C_(2))/(x^(2)) -...+ (""^(2n)C_(2n))/(x^(2n))` ...(iii)
On multiplying Eqs .(i) and (ii) , we get
`((x^(2) -1)^(2n))/(x^(2n)) = (""^(2n)C_(0) + ""^(2n)C_(1)x + ""^(2n)C_(2)x^(2) + ...+ ""^(2n)C_(2n)x^(2n))`
` xx(""^(2n)C_(0) - (""^(2n)C_(1))/(x) +( ""^(2n)C_(2))/(x^(2))-...+(""^(2n)C_(2n))/(x^(2n)))`...(iii)
Now , constant term in RHS
`= (""^(2n)C_(0))^(2) - (""^(2n)C_(1))^(2)+ (""^(2n)C_(2))^(2)- ...+ (""^(2n)C_(2n))^(2)`
Constant term in LHS = Constant term in `((x^(2) -1)^(2n))/(x^(2n))`
= Coefficient of ` x^(2n) " in" (x^(2) -1)^(2n)`
= Coefficient of ` x^(2n)" in " (1 - x^(2)) ^(2n)`
` = ""^(2n)C_(n) (-1)^(n)= (-1)^(n) *""^(2n)C_(n)`
But Eq.(iii) is an identity , therefore the constant term in
RHS = constant term in LHS .
` rArr (""^(2n)C_(0))^(2) - (""^(2n)C_(1))^(2) + (""^(2n)C_(2))^(2)- ...+ (""^(2n)C_(2n))^(2)`
` = (-1)^(n) *""^(2n)C_(n)` .
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 1|8 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Prove that (""^(2n)C_(0))^2-(""^(2n)C_(1))^2+(""^(2n)C_(2))^2-.....+(-1)^n(""^(2n)C_(2n))^2=(-1)^n.""^(2n)C_(n)

(*^(n)c_(0))^(2)+3(.^(n)C_(1))^(2)+5(.^(n)C_(2))^(2)+ ......+(2n+1)(.^(n)C_(n))^(2)

The value of sum (""^(n) C_(1) )^(2)+ (""^(n) C_(2) )^(2) + (""^(n) C_(3))^(2) + …+ (""^(n) C_(n) )^(2) is

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

Prove that C_(1)^(2)-2*C_(2)^(2)+3*C_(3)^(2)-…-2n*C_(2n)^(2)=(-1)^(n)n*C_(n)

Prove that : ""^(n)C_(0).""^(2n)C_(n)-""^(n)C_(1).""^(2n-2)Cn_(n)+""^(n)C_(2).""^(2n-4)Cn_(n)+......=2^n

Prove that ^nC_(0)^(n)C_(0)-^(n+1)C_(1)^(n)C_(1)+^(n+2)C_(2)^(n)C_(2)-...=(-1)^(n)

ARIHANT MATHS-BIONOMIAL THEOREM-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Prove that (""^(2n)C(0))^(2)-(""^(2n)C(1))^(2)+(""^(2n)C(2))^(2)-…+(""...

    Text Solution

    |

  2. The value of (30 0)(30 10)-(30 1)(30 11)+(30 2)(30 12)++(30 20)(30 30)...

    Text Solution

    |

  3. If the coefficient of pth, (p+1)thand (p+2)th terms in the expansion ...

    Text Solution

    |

  4. If the coefficient of x^7 in (ax^2+1/(bx))^11 is equal to the coeffici...

    Text Solution

    |

  5. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+ ,a n da1=a2=10...

    Text Solution

    |

  6. In the binomial expansion of (a - b)^(n) , n ge 5 , the sum of the ...

    Text Solution

    |

  7. The sum of the series C 20()0-C 20()1+C 20()2-C 20()3+...-...+C 20()(1...

    Text Solution

    |

  8. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  9. The remainder left out when 8^(2n)""(62)^(2n+1) is divided by 9 is (1)...

    Text Solution

    |

  10. For r= 0, 1,.....,10, let Ar,Br, and Crdenote, respectively, the coe...

    Text Solution

    |

  11. So, statement-1 is also true. Stetement-2 is a correct expanation fo...

    Text Solution

    |

  12. The coefficient of x^(7) in the expansion of (1-x-x^(2) + x^(3))^(6) i...

    Text Solution

    |

  13. If n is a positive integer, then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is ...

    Text Solution

    |

  14. In the expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))^10 ...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. If the coefficients of x^(3) and x^(4) in the expansion of (1 + ax + b...

    Text Solution

    |

  17. Coefficient of x^(11) in the expansion of (1+x^2)(1+x^3)^7(1+x^4)^(12)...

    Text Solution

    |

  18. The sum of coefficients in integral powers of x in the binominal expan...

    Text Solution

    |

  19. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  20. If the number of terms in the expansion of (1-2/x+4/(x^2))^n , x!=0, i...

    Text Solution

    |

  21. Let m be the smallest positive integer such that the coefficient of x^...

    Text Solution

    |