Home
Class 12
MATHS
If (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r...

If ` (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r),(1 + (C_(1))/(C_(0))) (1 + (C_(2))/(C_(1)))...(1 + (C_(n))/(C_(n-1))) ` is equal to

A

`(n^(n-1))/((n-1)!)`

B

`((n+1)^(n-1))/((n-1)!) `

C

`((n+1)^(n))/(n!)`

D

`((n+1)^(n+1))/(n!)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ (1 + \frac{C_1}{C_0})(1 + \frac{C_2}{C_1})...(1 + \frac{C_n}{C_{n-1}}) \] where \( C_r \) represents the binomial coefficients, specifically \( C_r = \binom{n}{r} \). ### Step-by-step Solution: 1. **Understanding the Binomial Coefficients**: The binomial coefficients are defined as: \[ C_r = \binom{n}{r} = \frac{n!}{r!(n-r)!} \] Therefore, we can express the ratios: \[ \frac{C_r}{C_{r-1}} = \frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{n!/(r!(n-r)!)}{(n!/(r-1)!(n-r+1)!)} = \frac{(n-r+1)}{r} \] 2. **Substituting the Ratios**: Now, substituting this into our expression, we have: \[ 1 + \frac{C_r}{C_{r-1}} = 1 + \frac{(n-r+1)}{r} = \frac{r + (n-r+1)}{r} = \frac{n+1}{r} \] 3. **Writing the Full Product**: Thus, the entire product becomes: \[ \prod_{r=1}^{n} \left(1 + \frac{C_r}{C_{r-1}}\right) = \prod_{r=1}^{n} \frac{n+1}{r} \] 4. **Simplifying the Product**: The product can be simplified as: \[ \prod_{r=1}^{n} \frac{n+1}{r} = \frac{(n+1)^n}{1 \cdot 2 \cdot 3 \cdots n} = \frac{(n+1)^n}{n!} \] 5. **Final Result**: Therefore, the final result of the expression is: \[ \frac{(n+1)^n}{n!} \] ### Final Answer: \[ \frac{(n+1)^n}{n!} \]
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 2|10 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 3|10 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise JEE Type Solved Example : (Matching Type Questions )|2 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

If (1+x)^(n)=underset(r=0)overset(n)sumC_(r).x^(r) , then (1+(C_(1))/(C_(0)))(1+(C_(2))/(C_(1))) . . . .(1+(C_(n))/(C_(n-1)))=0

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r) then prove that C_(0)+(C_(1))/(2)+......+(C_(n))/(n+1)=2

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r), show that (C_(0))/(2)+(C_(1))/(3)+(C_(2))/(4)+...+(C_(n))/(n+2)=(n*2^(n+1)+1)/((n+1)(n+2))

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r), then prove that C_(1)+2c_(2)+3C_(1)+...+nC_(n)=n2^(n-1)...

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r) then prove that C_(1)+2C_(2)+3C_(3)+....+nC_(n)=n2^(n-1)