Home
Class 12
MATHS
If the equation of the locus of a point ...

If the equation of the locus of a point equidistant from the points `(a_1, b_1)` and `(a_2, b_2)` is `(a_1-a_2)x+(b_1-b_2)y+c=0` , then the value of `c` is `a a2-a2 2+b1 2-b2 2` `sqrt(a1 2+b1 2-a2 2-b2 2)` `1/2(a1 2+a2 2+b1 2+b2 2)` `1/2(a2 2+b2 2-a1 2-b1 2)`

A

`a_(1)^(2)-a_(2)^(2)+b_(1)^(2)-b_(2)^(2)`

B

`sqrt((a_(1)^(2)+b_(1)^(2)-a_(2)^(2)-b_(2)^(2)))`

C

`1/2(a_(1)^(2)+a_(2)^(2)+b_(1)^(2)+b_(2)^(2))`

D

`1/2(a_(2)^(2)+b_(2)^(2)-a_(1)^(2)-b_(1)^(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • THE STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise For Session 6|12 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|28 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise For Session 4|15 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos

Similar Questions

Explore conceptually related problems

If the equation of the locus of a point equidistant from the points (a_1,b_1) and (a_2,b_2) is (a_1-a_2)x+(b_2+b_2)y+c=0 , then the value of C is

If the points (a_1, b_1),\ \ (a_2, b_2) and (a_1+a_2,\ b_1+b_2) are collinear, show that a_1b_2=a_2b_1 .

If the tangent and normal to xy=c^2 at a given point on it cut off intercepts a_1, a_2 on one axis and b_1, b_2 on the other axis, then a_1 a_2 + b_1 b_2 = (A) -1 (B) 1 (C) 0 (D) a_1 a_2 b_1 b_2

If the tangent and the normal to x^2-y^2=4 at a point cut off intercepts a_1,a_2 on the x-axis respectively & b_1,b_2 on the y-axis respectively. Then the value of a_1a_2+b_1b_2 is equal to:

Prove by vector method that (a_1b_1+a_2b_2+a_3b_3)^2lt+(a_1^2+a_2^2+a_3^2)(b_1^2+b_2^2+b_3^2)

In direct proportion a_1/b_1 = a_2/b_2

If b,c B are given, and if b lt c , show that (a_1 -a_2)^2 +(a_1 + a_2)^2 tan^2 B= 4b^2 , where a_1,a_2 are the two values of the third side.

If the line a_1 x + b_1 y+ c_1 = 0 and a_2 x + b_2 y + c_2 = 0 cut the coordinate axes in concyclic points, prove that : a_1 a_2 = b_1 b_2 .

Prove that the value of each the following determinants is zero: |[a_1,l a_1+mb_1,b_1],[a_2,l a_2+mb_2,b_2],[a_3,l a_3+m b_3,b_3]|

Let vec a=a_1 hat i+a_2 hat j+a_3 hat k , vec b=b_1 hat i+b_2 hat j+b_3 hat ka n d vec c=c_1 hat i+c_2 hat j+c_3 hat k be three nonzero vectors such that vec c is a unit vector perpendicular to both vec aa n d vec bdot If the angle between vec aa n d vec b is pi//6 , then the value of |a_1b_1c_1a_2b_2c_2a_3b_3c_3| is a.0 b. 1 c. 1/4(a1 2+a2 2+a3 2)(b1 2+b2 2+b3 2) d. 3/4(a1 2+a2 2+a3 2)(b1 2+b2 2+b3 2)