Home
Class 12
MATHS
Statement I The incentre of a triangle f...

Statement I The incentre of a triangle formed by the line `xcos(pi/9) + y sin (pi/9) = pi`
`x cos ((8pi)/9)+ y sin ((8pi)/9)`
` = pi and x cos ((13pi)/9) + y sin ((13pi)/9) = pi ` is (0,0)
Statement if Any point equisdistant from the given three non - concurrent straight lines in the plane is the incentre of the triangle .

A

Statement I is true ,statement II is true , statement II is a correct explanation for statement I

B

Statement I is true ,statement II is true statement II is not a correct explanation for statement I

C

Statement I is true ,statement II is false

D

Statement I is false ,statement II is true

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • THE STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|11 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos

Similar Questions

Explore conceptually related problems

The sum cos ((pi) / (9)) + cos ((2 pi) / (9)) + cos ((3 pi) / (9)) + ... + cos ((17 pi) / (9 )) =

[(1 + cos ((pi) / (8)) + i sin ((pi) / (8))) / (1 + cos ((pi) / (8)) - sin ((pi) / (8 )))] ^ (8) =?

sin ((5 pi) / (18)) - cos ((4 pi) / (9)) = sqrt (3) sin ((pi) / (9))

Value of expression sin ((pi) / (9)) + sin ((2 pi) / (9)) + sin ((3 pi) / (9)) + ... + sin ((17 pi) / ( 9)) =

Prove the following cos ((pi) / (4) -x) cos ((pi) / (4) -y) -sin ((pi) / (4) -x) sin ((pi) / (4) - y) = sin (x + y)

sin((13pi)/3)sin((8pi)/3)+cos((2pi)/3)sin((5pi)/6)=1/2

Prove that (a) sin^(2)(pi/6) + cos^(2)( pi/3) - tan^(2)(pi/4) = -1/2 (b) sin((8pi)/3) cos((23pi)/6) + cos((13pi)/3) sin((35pi)/6) = 1/2

Prove that (1+cos pi/9) (1 + cos 3pi/9) (1+ cos 5pi/9) (1 + cos 7pi/9) =9/16 .