Home
Class 12
MATHS
Through a fixed point (h,k), secant are ...

Through a fixed point (h,k), secant are drawn to the circle `x^(2)+y^(2)=r^(2)`. Show that the locus of the midpoints of the secants by the circle is `x^(2)+y^(2)=hx+ky`.

Text Solution

Verified by Experts

The correct Answer is:
`:.` Locus of `P(x_(1),y_(1))" is "x^(2)+y^(2)=hx+ky`
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    ARIHANT MATHS|Exercise Exercise For Session 1|18 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|43 Videos

Similar Questions

Explore conceptually related problems

Through a fixed point (h,k) secants are drawn to the circle x^(2)+y^(2)=r^(2). Then the locus of the mid-points of the secants by the circle is

Through a fixed point (h, k) secants are drawn to the circle x^(2) + y^(2) =a^(2) . The locus of the mid points of the secants intercepted by the given circle is

The midpoint of the chord y=x-1 of the circle x^(2)+y^(2)-2x+2y-2=0 is

Find the locus of the midpoint of the chords of circle x^(2)+y^(2)=a^(2) having fixed length l.

If the line hx + ky = 1 touches x^(2)+y^(2)=a^(2) , then the locus of the point (h, k) is a circle of radius

STATEMENT-1 : The agnle between the tangents drawn from the point (6, 8) to the circle x^(2) + y^(2) = 50 is 90^(@) . and STATEMENT-2 : The locus of point of intersection of perpendicular tangents to the circle x^(2) + y^(2) = r^(2) is x^(2) + y^(2) = 2r^(2) .

If a circle passes through the point (a,b) and cuts the circle x^(2)+y^(2)=k^(2) orthogonally, then the equation of the locus of its center is

ARIHANT MATHS-CIRCLE -Exercise (Questions Asked In Previous 13 Years Exam)
  1. Through a fixed point (h,k), secant are drawn to the circle x^(2)+y^(2...

    Text Solution

    |

  2. A circle is given by x^2 + (y-1) ^2 = 1, another circle C touches it e...

    Text Solution

    |

  3. If the circles x^2+y^2+2a x+c y+a=0 and points Pa n dQ , then find the...

    Text Solution

    |

  4. A circle touches the x-axis and also touches the circle with center (...

    Text Solution

    |

  5. If a circle passes through the point (a, b) and cuts the circlex x^2+y...

    Text Solution

    |

  6. Let ABCD be a square of side length 2 units. C2 is the circle through ...

    Text Solution

    |

  7. ABCD is a square of side length 2 units. C(1) is the circle touching ...

    Text Solution

    |

  8. ABCD is a square of side length 2 units. C(1) is the circle touching ...

    Text Solution

    |

  9. If the lines 3x-4y-7 = 0 and 2x-3y-5=0 are two diameters of a circle o...

    Text Solution

    |

  10. Let C be the circle with centre (0, 0) and radius 3 units. The equatio...

    Text Solution

    |

  11. Tangents are drawn from the point (17, 7) to the circle x^2+y^2=169, S...

    Text Solution

    |

  12. Consider a family of circles which are passing through the point (-...

    Text Solution

    |

  13. A circle C of radius 1 is inscribed in an equilateral triangle PQR. Th...

    Text Solution

    |

  14. A circle C of radius 1 is inscribed in an equilateral triangle PQR. Th...

    Text Solution

    |

  15. A circle C of radius 1 is inscribed in an equilateral triangle PQR. Th...

    Text Solution

    |

  16. Consider: L1:2x+3y+p-3=0 L2:2x+3y+p+3=0 where p is a real number and...

    Text Solution

    |

  17. The point diametrically opposite to the point P(1, 0) on the circle x^...

    Text Solution

    |