Home
Class 12
MATHS
A circle of constant radius a passes thr...

A circle of constant radius `a` passes through the origin `O` and cuts the axes of coordinates at points `P` and `Q` . Then the equation of the locus of the foot of perpendicular from `O` to `P Q` is `(x^2+y^2)(1/(x^2)+1/(y^2))=4a^2` `(x^2+y^2)^2(1/(x^2)+1/(y^2))=a^2` `(x^2+y^2)^2(1/(x^2)+1/(y^2))=4a^2` `(x^2+y^2)(1/(x^2)+1/(y^2))=a^2`

Text Solution

Verified by Experts

The correct Answer is:
which is the required locus.
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    ARIHANT MATHS|Exercise Exercise For Session 1|18 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|43 Videos

Similar Questions

Explore conceptually related problems

A circle of radius r passes through origin and cut the y-axis at P and Q. The locus of foot of perpendicular drawn from origin upon line joining the points P and Q is (A) (x^(2)+y^(2))^(3)=r^(2)(x^(2)y^(2))(B)(x^(2)+y^(2))^(2)(x+y)=r^(2)(xy)(C)(x^(2)+y^(2))^(2)=r^(2)(x^(2)y^(2))(D)(x^(2)+y^(2))^(3)=4r^(2)(x^(2)y^(2))

The locus of the foot of perpendicular drawn from the centre of the ellipse x^2+""3y^2=""6 on any tangent to it is (1) (x^2-y^2)^2=""6x^2+""2y^2 (2) (x^2-y^2)^2=""6x^2-2y^2 (3) (x^2+y^2)^2=""6x^2+""2y^2 (4) (x^2+y^2)^2=""6x^2-2y^2

The equation of the curve passing through origin, whose slope at any point is (x(1+y))/(1+x^2) , is (A) (1+y)^2-x^2=1 (B) x^2+(y+1)^2=1 (C) (x+y)y=1-x^2 (D) x=ye^((1+y))

Let P be the point (1,0) and Q be a point on the locus y^(2)=8x. The locus of the midpoint of PQ is y^(2)+4x+2=0y^(2)-4x+2=0x^(2)-4y+2=0x^(2)+4y+2=0

Find the equation of line joining the center of the circles x^(2)+y^(2)-2x+4y+1=0 and 2x^(2)+2y^(2)-2y+4x+1=0

Show that the equation of the chord of the parabola y^2 = 4ax through the points (x_1, y_1) and (x_2, y_2) on it is : (y-y_1) (y-y_2) = y^2 - 4ax

Property 4: The equation of the family of circles passing through two given points P(x_(1),y_(1)) and Q(x_(2),y_(2))

ARIHANT MATHS-CIRCLE -Exercise (Questions Asked In Previous 13 Years Exam)
  1. A circle of constant radius a passes through the origin O and cuts the...

    Text Solution

    |

  2. A circle is given by x^2 + (y-1) ^2 = 1, another circle C touches it e...

    Text Solution

    |

  3. If the circles x^2+y^2+2a x+c y+a=0 and points Pa n dQ , then find the...

    Text Solution

    |

  4. A circle touches the x-axis and also touches the circle with center (...

    Text Solution

    |

  5. If a circle passes through the point (a, b) and cuts the circlex x^2+y...

    Text Solution

    |

  6. Let ABCD be a square of side length 2 units. C2 is the circle through ...

    Text Solution

    |

  7. ABCD is a square of side length 2 units. C(1) is the circle touching ...

    Text Solution

    |

  8. ABCD is a square of side length 2 units. C(1) is the circle touching ...

    Text Solution

    |

  9. If the lines 3x-4y-7 = 0 and 2x-3y-5=0 are two diameters of a circle o...

    Text Solution

    |

  10. Let C be the circle with centre (0, 0) and radius 3 units. The equatio...

    Text Solution

    |

  11. Tangents are drawn from the point (17, 7) to the circle x^2+y^2=169, S...

    Text Solution

    |

  12. Consider a family of circles which are passing through the point (-...

    Text Solution

    |

  13. A circle C of radius 1 is inscribed in an equilateral triangle PQR. Th...

    Text Solution

    |

  14. A circle C of radius 1 is inscribed in an equilateral triangle PQR. Th...

    Text Solution

    |

  15. A circle C of radius 1 is inscribed in an equilateral triangle PQR. Th...

    Text Solution

    |

  16. Consider: L1:2x+3y+p-3=0 L2:2x+3y+p+3=0 where p is a real number and...

    Text Solution

    |

  17. The point diametrically opposite to the point P(1, 0) on the circle x^...

    Text Solution

    |