Home
Class 12
MATHS
Evaluate int (x^(2))/(x^(2)+5)dx...

Evaluate
`int (x^(2))/(x^(2)+5)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{x^2}{x^2 + 5} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand: \[ \frac{x^2}{x^2 + 5} = \frac{x^2 + 5 - 5}{x^2 + 5} = \frac{x^2 + 5}{x^2 + 5} - \frac{5}{x^2 + 5} \] This simplifies to: \[ 1 - \frac{5}{x^2 + 5} \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ \int \left(1 - \frac{5}{x^2 + 5}\right) \, dx = \int 1 \, dx - 5 \int \frac{1}{x^2 + 5} \, dx \] ### Step 3: Evaluate the first integral The first integral is straightforward: \[ \int 1 \, dx = x \] ### Step 4: Evaluate the second integral For the second integral, we recognize that \(5\) can be written as \(\sqrt{5}^2\): \[ \int \frac{1}{x^2 + 5} \, dx = \int \frac{1}{x^2 + (\sqrt{5})^2} \, dx \] Using the formula for the integral of \(\frac{1}{x^2 + a^2}\): \[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \] we have \(a = \sqrt{5}\): \[ \int \frac{1}{x^2 + 5} \, dx = \frac{1}{\sqrt{5}} \tan^{-1} \left(\frac{x}{\sqrt{5}}\right) + C \] ### Step 5: Combine the results Now we can combine our results: \[ \int \frac{x^2}{x^2 + 5} \, dx = x - 5 \left(\frac{1}{\sqrt{5}} \tan^{-1} \left(\frac{x}{\sqrt{5}}\right)\right) + C \] This simplifies to: \[ x - \sqrt{5} \tan^{-1} \left(\frac{x}{\sqrt{5}}\right) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{x^2}{x^2 + 5} \, dx = x - \sqrt{5} \tan^{-1} \left(\frac{x}{\sqrt{5}}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(x^(2)+1)/(x^(2)-5x+6)dx

Evaluate: "int(x^(4)-1)/(x^(2)+5)dx

Evaluate: int(x^(2)-2)/(x^(5)-x)dx

Evaluate: ( i ) int(x^(2))/((a^(2)-x^(2))^(3/2))dx (ii) int(x^(7))/((a^(2)-x^(2))^(5))dx

Evaluate int(x^(2)dx)/((x^(3)-2)^(5)) .

Evaluate int(x^(2)+5)^(3)dx

Evaluate int_(1)^(5)(x)/(4+x^(2))dx

Evaluate: int(1)/((x^(2)+2)(x^(2)+5))dx

Evaluate int_(0)^(2)(2x^(2)+x+5)dx as limit of a sum.