Home
Class 12
MATHS
Evaluate int 2^(log(4)x)dx...

Evaluate
`int 2^(log_(4)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int 2^{\log_{4} x} \, dx \), we can follow these steps: ### Step 1: Simplify the expression \( 2^{\log_{4} x} \) We know that: \[ \log_{4} x = \frac{\log_{2} x}{\log_{2} 4} \] Since \( \log_{2} 4 = 2 \), we can rewrite it as: \[ \log_{4} x = \frac{\log_{2} x}{2} \] Thus, we have: \[ 2^{\log_{4} x} = 2^{\frac{\log_{2} x}{2}} = 2^{\log_{2} x^{1/2}} = x^{1/2} \] ### Step 2: Rewrite the integral Now we can rewrite the integral: \[ I = \int 2^{\log_{4} x} \, dx = \int x^{1/2} \, dx \] ### Step 3: Integrate \( x^{1/2} \) The integral of \( x^{1/2} \) can be computed using the power rule: \[ \int x^{n} \, dx = \frac{x^{n+1}}{n+1} + C \] For \( n = \frac{1}{2} \): \[ \int x^{1/2} \, dx = \frac{x^{1/2 + 1}}{1/2 + 1} + C = \frac{x^{3/2}}{3/2} + C = \frac{2}{3} x^{3/2} + C \] ### Step 4: Write the final answer Thus, the final result of the integral is: \[ I = \frac{2}{3} x^{3/2} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int2^(log_(4)x)dx

Evaluate: int x^(2)log(1+x)dx

Evaluate int(log_(e)x)^(2)dx

Evaluate: int(log x^(2))/(x)dx

Evaluate: int sin^(2)(log x)dx

Evaluate int x(log_ex)^2dx

Evaluate int log_e(a^2+x^2)dx

Evaluate int log_e(a^x)dx

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx