Home
Class 12
MATHS
Evaluate int(1+2x^(2))/(x^(2)(1+x^(2)...

Evaluate
`int(1+2x^(2))/(x^(2)(1+x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{1 + 2x^2}{x^2(1 + x^2)} \, dx, \] we can follow these steps: ### Step 1: Rewrite the integrand We can express the integrand as: \[ \frac{1 + 2x^2}{x^2(1 + x^2)} = \frac{1 + x^2 + x^2}{x^2(1 + x^2)} = \frac{1 + x^2}{x^2(1 + x^2)} + \frac{x^2}{x^2(1 + x^2)}. \] ### Step 2: Split the integral Now, we can split the integral into two parts: \[ \int \left( \frac{1 + x^2}{x^2(1 + x^2)} + \frac{x^2}{x^2(1 + x^2)} \right) \, dx = \int \frac{1}{x^2} \, dx + \int \frac{1}{1 + x^2} \, dx. \] ### Step 3: Evaluate each integral 1. **First Integral**: \[ \int \frac{1}{x^2} \, dx = \int x^{-2} \, dx = -\frac{1}{x} + C_1. \] 2. **Second Integral**: \[ \int \frac{1}{1 + x^2} \, dx = \tan^{-1}(x) + C_2. \] ### Step 4: Combine the results Now we can combine the results of both integrals: \[ \int \frac{1 + 2x^2}{x^2(1 + x^2)} \, dx = -\frac{1}{x} + \tan^{-1}(x) + C, \] where \( C = C_1 + C_2 \) is the constant of integration. ### Final Answer Thus, the final answer is: \[ -\frac{1}{x} + \tan^{-1}(x) + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(1-x^(2))/(1+x^(2))dx.

Evaluate: int(x^(2)+1)/(x^(2)-1)dx

Evaluate : int(x^(2)-x+2)/(x^(2)+1)dx

Evaluate : int(x^(2))/(x(1+x^(2)))dx

Evaluate int(x^(2)+x+1)/(x^(2)-1)dx

Evaluate :int(1-x^(2))/(x(1-2x))dx

Evaluate: int(x^(2)+1)/(x(x^(2)-1))dx

Evaluate : int_(-1)^(1)(x^(2))/(1+x^(2))dx

Evaluate : int_(1)^(2)(x^(3)-1)/(x^(2))dx

Evaluate: int(1+x^(2))/((1-x^(2))sqrt(1+x^(2)+x^(4)))dx