Home
Class 12
MATHS
Evaluate int(x^(6)-1)/((x^(2)+1))dx...

Evaluate
`int(x^(6)-1)/((x^(2)+1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x^6 - 1}{x^2 + 1} \, dx, \] we will follow a systematic approach. ### Step 1: Rewrite the integrand We can rewrite the integrand by adding and subtracting 1 in the numerator: \[ I = \int \left( \frac{x^6 + 1}{x^2 + 1} - \frac{2}{x^2 + 1} \right) \, dx. \] ### Step 2: Simplify the first term Next, we focus on simplifying the first term: \[ \frac{x^6 + 1}{x^2 + 1}. \] Notice that \(x^6 + 1\) can be factored as: \[ x^6 + 1 = (x^2)^3 + 1^3 = (x^2 + 1)(x^4 - x^2 + 1). \] So, we can write: \[ \frac{x^6 + 1}{x^2 + 1} = x^4 - x^2 + 1. \] ### Step 3: Substitute back into the integral Now substituting this back into our integral, we have: \[ I = \int \left( x^4 - x^2 + 1 - \frac{2}{x^2 + 1} \right) \, dx. \] ### Step 4: Separate the integrals We can now separate the integral into simpler parts: \[ I = \int (x^4 - x^2 + 1) \, dx - 2 \int \frac{1}{x^2 + 1} \, dx. \] ### Step 5: Evaluate each integral Now, we will evaluate each integral separately. 1. For \(\int x^4 \, dx\): \[ \int x^4 \, dx = \frac{x^5}{5}. \] 2. For \(\int x^2 \, dx\): \[ \int x^2 \, dx = \frac{x^3}{3}. \] 3. For \(\int 1 \, dx\): \[ \int 1 \, dx = x. \] 4. For \(\int \frac{1}{x^2 + 1} \, dx\): \[ \int \frac{1}{x^2 + 1} \, dx = \tan^{-1}(x). \] ### Step 6: Combine the results Now, substituting these results back into the expression for \(I\): \[ I = \left( \frac{x^5}{5} - \frac{x^3}{3} + x \right) - 2 \tan^{-1}(x) + C, \] where \(C\) is the constant of integration. ### Final Answer Thus, the final result for the integral is: \[ I = \frac{x^5}{5} - \frac{x^3}{3} + x - 2 \tan^{-1}(x) + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^(2)+1)/(x(x^(2)-1))dx

Evaluate : int(x^(2)-1)/((x+1)(x+2))dx

int(x^(6))/(x^(2)+1)dx

Evaluate int 5(x^(6)+1)dx

Evaluate int(x^(2)+x+1)/(x^(2)-1)dx

Evaluate int(1+x^(6))/(1+x^(2))dx

Evaluate: int(x^(6))/(x-1)dx

Evaluate : "int((x^(2)-x+1))/((x^(2)+1))dx

Evaluate : (i) int(3x^(2))/((1+x^(6)))dx (ii) int(x^(3))/((x^(2)+1)^(3))dx (iii) (x^(8))/((1-x^(3))^(1//3))dx

Evaluate : int (x^(4)+1)/(x^(6)+1)" dx "