Home
Class 12
MATHS
Evaluate int cos x cos 2x cos 5x dx...

Evaluate `int cos x cos 2x cos 5x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \cos x \cos 2x \cos 5x \, dx \), we can use the product-to-sum identities to simplify the expression. Here are the steps to solve the integral: ### Step 1: Use the Product-to-Sum Formula We know that: \[ 2 \cos a \cos b = \cos(a + b) + \cos(a - b) \] We will apply this formula to \( \cos x \) and \( \cos 2x \). ### Step 2: Simplify \( \cos x \cos 2x \) Using the formula: \[ \cos x \cos 2x = \frac{1}{2} \left( \cos(3x) + \cos(-x) \right) = \frac{1}{2} \left( \cos(3x) + \cos x \right) \] Thus, we can rewrite the integral as: \[ \int \cos x \cos 2x \cos 5x \, dx = \int \left( \frac{1}{2} \left( \cos(3x) + \cos x \right) \cos 5x \right) \, dx \] ### Step 3: Distribute \( \cos 5x \) Now we distribute \( \cos 5x \): \[ = \frac{1}{2} \int \left( \cos(3x) \cos 5x + \cos x \cos 5x \right) \, dx \] ### Step 4: Simplify Each Term We will simplify each term using the product-to-sum formula again. 1. For \( \cos(3x) \cos(5x) \): \[ \cos(3x) \cos(5x) = \frac{1}{2} \left( \cos(8x) + \cos(-2x) \right) = \frac{1}{2} \left( \cos(8x) + \cos(2x) \right) \] 2. For \( \cos x \cos(5x) \): \[ \cos x \cos(5x) = \frac{1}{2} \left( \cos(6x) + \cos(-4x) \right) = \frac{1}{2} \left( \cos(6x) + \cos(4x) \right) \] ### Step 5: Combine the Integrals Now we can combine everything: \[ = \frac{1}{2} \int \left( \frac{1}{2} \left( \cos(8x) + \cos(2x) \right) + \frac{1}{2} \left( \cos(6x) + \cos(4x) \right) \right) \, dx \] \[ = \frac{1}{4} \int \left( \cos(8x) + \cos(2x) + \cos(6x) + \cos(4x) \right) \, dx \] ### Step 6: Integrate Each Cosine Term Now we can integrate each term: \[ = \frac{1}{4} \left( \frac{\sin(8x)}{8} + \frac{\sin(2x)}{2} + \frac{\sin(6x)}{6} + \frac{\sin(4x)}{4} \right) + C \] ### Final Result Thus, the final result is: \[ = \frac{1}{32} \sin(8x) + \frac{1}{8} \sin(2x) + \frac{1}{24} \sin(6x) + \frac{1}{16} \sin(4x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

Evaluate int(cosx-cos2 x)/(1-cos x) dx

Evaluate: int(cos x-cos2x)/(1-cos x)dx

Evaluate int x^(2) cos x dx

Evaluate int sin x cosx * cos 2x * cos 4x dx

int(cos3x-cos2x)/(cos x)dx

Evaluate : int " sin 5x . cos x dx "

int(cos x-cos2x)/(1-cos x)*dx

Evaluate: int(cos x)/(cos3x)dx

The value of int (cos 7x-cos 8x)/(1+2 cos 5x)dx , is