Home
Class 12
MATHS
Evaluate int(1)/(sqrt(x^(2)-2x+3))dx...

Evaluate `int(1)/(sqrt(x^(2)-2x+3))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{1}{\sqrt{x^2 - 2x + 3}} \, dx \), we can follow these steps: ### Step 1: Complete the square First, we need to rewrite the expression under the square root in a more manageable form. The expression \( x^2 - 2x + 3 \) can be rewritten by completing the square. \[ x^2 - 2x + 3 = (x - 1)^2 + 2 \] ### Step 2: Substitute Now, we can substitute \( t = x - 1 \). Therefore, \( dx = dt \). The integral now becomes: \[ \int \frac{1}{\sqrt{(x - 1)^2 + 2}} \, dx = \int \frac{1}{\sqrt{t^2 + 2}} \, dt \] ### Step 3: Use a standard integral formula We can use the standard integral formula: \[ \int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln |x + \sqrt{x^2 + a^2}| + C \] In our case, \( a^2 = 2 \), so \( a = \sqrt{2} \). Thus, we have: \[ \int \frac{1}{\sqrt{t^2 + 2}} \, dt = \ln |t + \sqrt{t^2 + 2}| + C \] ### Step 4: Substitute back Now we substitute back \( t = x - 1 \): \[ \ln |(x - 1) + \sqrt{(x - 1)^2 + 2}| + C \] ### Step 5: Simplify the expression Now we simplify the expression inside the logarithm: \[ \sqrt{(x - 1)^2 + 2} = \sqrt{x^2 - 2x + 3} \] Thus, the final answer is: \[ \ln |(x - 1) + \sqrt{x^2 - 2x + 3}| + C \] ### Final Answer \[ \int \frac{1}{\sqrt{x^2 - 2x + 3}} \, dx = \ln |(x - 1) + \sqrt{x^2 - 2x + 3}| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1)/(x+sqrt(x^(2)-x+1))dx

Evaluate: (i) int(1)/(sqrt(1+4x^(2)))dx (ii) int(1)/(sqrt(a^(2)+b^(2)x^(2)))dx

Evaluate: int(1)/(sqrt(3-2x-x^(2)))dx

Evaluate: int(x+1)sqrt(x^(2)-x+1)dx

Evaluate: int(x-1)sqrt (x^2-2x)dx

Evaluate: (i) int(1)/(sqrt(a^(2)-b^(2)x^(2)))dx (ii) int(1)/(sqrt((2-x)^(2)+1))dx

Evaluate: int(1)/(x^(2)sqrt(1+x^(2)))dx

Evaluate: int1/(sqrt(5x^2-2x))\ dx

Evaluate: int(3x-1)/sqrt (3x^2-2x+7)dx

Evaluate int(x+1)/sqrt (2x^2+x-3)dx