Home
Class 12
MATHS
Evaluate int(2 sin2x-cos x)/(6-cos^ (2)...

Evaluate `int(2 sin2x-cos x)/(6-cos^ (2)x-4sinx) dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{2 \sin 2x - \cos x}{6 - \cos^2 x - 4 \sin x} \, dx, \] we will follow these steps: ### Step 1: Simplify the numerator Recall that \(\sin 2x = 2 \sin x \cos x\). Thus, we can rewrite the numerator: \[ 2 \sin 2x - \cos x = 4 \sin x \cos x - \cos x = \cos x (4 \sin x - 1). \] ### Step 2: Simplify the denominator The denominator can be rewritten as follows: \[ 6 - \cos^2 x - 4 \sin x = 6 - (1 - \sin^2 x) - 4 \sin x = 5 + \sin^2 x - 4 \sin x. \] ### Step 3: Substitute the expressions into the integral Now substituting the simplified expressions into the integral, we have: \[ I = \int \frac{\cos x (4 \sin x - 1)}{5 + \sin^2 x - 4 \sin x} \, dx. \] ### Step 4: Factor the denominator Let \(u = \sin x\). Then \(du = \cos x \, dx\). The integral becomes: \[ I = \int \frac{(4u - 1)}{5 + u^2 - 4u} \, du. \] ### Step 5: Rewrite the denominator The denominator can be rewritten as: \[ 5 + u^2 - 4u = u^2 - 4u + 5 = (u - 2)^2 + 1. \] ### Step 6: Split the integral Now we can split the integral: \[ I = \int \frac{4u}{(u - 2)^2 + 1} \, du - \int \frac{1}{(u - 2)^2 + 1} \, du. \] ### Step 7: Evaluate the first integral For the first integral, we can use the substitution \(t = u - 2\), so \(du = dt\): \[ \int \frac{4(u)}{(u - 2)^2 + 1} \, du = 4 \int \frac{t + 2}{t^2 + 1} \, dt = 4 \left( \int \frac{t}{t^2 + 1} \, dt + 2 \int \frac{1}{t^2 + 1} \, dt \right). \] The first part evaluates to \(\ln(t^2 + 1)\) and the second part evaluates to \(2 \tan^{-1}(t)\). ### Step 8: Evaluate the second integral The second integral is: \[ \int \frac{1}{(u - 2)^2 + 1} \, du = \tan^{-1}(u - 2). \] ### Step 9: Combine results Putting it all together: \[ I = 4 \left( \ln((u - 2)^2 + 1) + 2 \tan^{-1}(u - 2) \right) - \tan^{-1}(u - 2) + C. \] ### Step 10: Substitute back for \(u\) Finally, substituting back \(u = \sin x\): \[ I = 4 \ln(\sin^2 x - 4 \sin x + 5) + 7 \tan^{-1}(\sin x - 2) + C. \] ### Final Answer Thus, the evaluated integral is: \[ I = 4 \ln(\sin^2 x - 4 \sin x + 5) + 7 \tan^{-1}(\sin x - 2) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int((3sinx-2)cosx)/(5-cos^2x-4sinx)\ dx

Evaluate: int(sin x cos x)/(3sin^(2)x-4cos^(2)x)dx

Evaluate: int(3sin x+2cos x)/(3cos x+2sin x)dx

Evaluate: int(sin x+2cos x)/(2sin x+cos x)dx

Evaluate: (i) int(sin2x)/(a cos^(2)x+b sin^(2)x)dx (ii) int(cos x)/(2+3sin x)dx

Evaluate: int(-sin x+2cos x)/(2sin x+cos x)dx

Evaluate: int_0^(pi//2)(cos^2x)/(cos^2x+4sin^2x)dx

Evaluate: int(sin2x)/(sqrt(cos^(4)x-sin^(2)x+2))dx

int(sin2x-cos2x)/(sin2x*cos2x)dx=?

int(cos 2x-sin 2x)/(cos2x+sin2x)dx